Princípio Fundamental da Contagem
O princípio fundamental da contagem postula que:
“quando um evento é composto por n etapas sucessivas e independentes, de tal modo que as possibilidades da primeira etapa é x e as possibilidades da segunda etapa é y, resulta no número total de possibilidades de o evento ocorrer, dado pelo produto (x) . (y)”.
Em resumo, no princípio fundamental da contagem, multiplica-se o número de opções entre as escolhas que lhe são apresentadas.
Como exemplo, podemos pensar na combinação de roupas de uma garota, sendo que ela possui 3 tipos de calças, 4 tipos de blusas, 2 tipos de sapatos e 3 tipos de bolsas.
Logo, para saber quais as diferentes possibilidades que a garota possui, formadas por suas peças de roupas, basta multiplicar o número de peças: 3 x 4 x 2 x 3 = 72.
Portanto, a garota possui 72 possibilidades de configurações diferentes para o uso das peças de roupas e dos acessórios apresentados.
Tipos de Combinatória
A combinatória utiliza de importantes ferramentas, ou seja, há três tipos básicos de agrupamento dos elementos: arranjos, combinações e permutações. Todas utilizam o fatorial:
Arranjos
Nos arranjos, os agrupamentos dos elementos dependem da ordem e da natureza dos mesmos.
Assim, para obter o arranjo simples de n elementos tomados p a p (p ≤ n), ou seja, para calcular os diferentes arranjos ordenados de tais elementos, utiliza-se a seguinte expressão:
Como exemplo de arranjo, podemos pensar nas eleições, de modo que 20 deputados concorrem a 2 vagas no estado de São Paulo.
Dessa forma, de quantas maneiras distintas a escolha poderá ser feita? Observe que nesse caso, a ordem é importante, visto que altera o resultado final.
Logo, o arranjo pode ser feito de 380 maneiras diferentes.
Combinações
As combinações são subconjuntos em que a ordem dos elementos não é importante, entretanto, são caracterizadas pela natureza dos mesmos.
Assim, para calcular uma combinação simples de n elementos tomados p a p (p ≤ n), utiliza-se a seguinte expressão:
A fim de exemplificar, podemos pensar na escolha de 3 membros para formar a comissão organizadora de um evento, dentre as 10 pessoas que se candidataram.
Para tanto, Maria, João e José são os escolhidos, porém de quantas maneiras distintas esse grupo pode se combinar? Note que, ao contrário dos arranjos, nas combinações, a ordem dos elementos não é relevante, ou seja, a combinação Maria, João e José é equivalente à João, José e Maria.
Logo, há 120 maneiras distintas de combinar os 3 membros da comissão.
Permutações
As permutações são agrupamentos ordenados, donde o número de elementos (n) do agrupamento é igual ao número de elementos disponíveis, expresso pela fórmula:
Para exemplificar, pensemos de quantas maneiras diferentes poderiam surgir a sequência de resultados dos 5 números que saíram na loteria: 11, 12, 44, 52, 61. Sendo assim, os números que compõem o resultado final é uma sequência de 6 números, logo:
Logo, o resultado final da loteria, podem ser permutados 720 vezes.
Exercícios de permutações simples
1. De quantos modos distintos 5 pessoas podem sentar-se em um banco de jardim com 5 lugares?
Auxílio: P(n)=n!, n=5
Resposta: N=1×2×3×4×5=120
2. De quantos modos distintos podemos colocar 3 livros juntos em uma estante de biblioteca?
Auxílio: P(n)=n!, n=3
Resposta: N=1×2×3=6
3. De quantos modos distintos 5 pessoas podem sentar-se em um banco de jardim com 5 lugares?
Auxílio: P(n)=n!, n=5
Resposta: N=1×2×3×4×5=120
2. Qual é o número possível de anagramas que se pode montar com as letras da palavra AMOR?
Auxílio: P(n)=n!, n=4
Resposta: N=1×2×3×4=24
3. Quantos números com cinco algarismos podemos construir com os números ímpares 1,3,5,7,9.
Auxílio:
Resposta: P(5)=120.
4. Quantos números com cinco algarismos podemos construir com os números ímpares 1,3,5,7,9, desde que estejam sempre juntos os algarismos 1 e 3.
Auxílio: Cada conjunto com os algarismos 13 e 31 forma um grupo que junto com os outros, fornece 4 grupos.
Resposta: N=2×P(4)=2×24=48
5. Consideremos um conjunto com n letras. Quantas permutações começam por uma determinada letra?
Resposta: N=P(n-1)=(n-1)!
6. Quantos são os anagramas possíveis com as letras: ABCDEFGHI?
Resposta: P(9)=9!
7. Quantos são os anagramas possíveis com as letras: ABCDEFGHI, começando por A?
Resposta: P(8)=8!
8. Quantos são os anagramas possíveis com as letras: ABCDEFGHI, começando por AB?
Resposta: P(7)=7!
9. Quantos são os anagramas possíveis com as letras: ABCDEFGHI, começando por ABC?
Resposta: P(6)=6!
10. Quantos são os anagramas possíveis com as letras: ABCDEFGHI, começando por uma das letras A, B ou C?
Auxílio: Começando por uma das letras A,B,C: P(8)=8!
Resposta: N=3×P(8)=3×8!
11. Quantos são os anagramas possíveis com as letras: ABCDEFGHI, começando pelas três letras do grupo ABC?
Auxílio: Começando pelas letras do grupo ABC: P(3)=3!=6
Resposta: N=P(3)×P(6)=6×120=720
12. Quantos são os anagramas possíveis com as letras: ABCDEFGHI, começando por uma vogal e terminando por uma consoante?
Auxílio: 3 são as vogais e 6 são as consoantes.
Resposta: N=P(3)×P(6)=6×120=720 (???)
13. Há 10 pessoas em um local, sendo 3 com camisas verdes, 3 com camisas amarelas, 2 com camisas azuis e 2 com camisas brancas. De quantos modos podemos perfilar todas essas 10 pessoas de modo que os grupos com as camisas de mesma cor fiquem juntos?
Auxílio: Temos 4 grupos de camisas, logo P(4) posições para as equipes e os grupos podem permutar as suas posições, respectivamente, P(3), P(3), P(2) e P(2).
Resposta: N=P(4)×P(3)×P(3)×P(2)×P(2)=3456
Exercícios de permutações com repetição
16. Quantos são os anagramas possíveis com as letras da palavra: ARARA?
Auxílio: A letra A aparece 3 vezes e a letra R aparece 2 vezes.
Resposta: Pr(5;3+2)=5!/(3!2!)=10
17. Quantos são os anagramas possíveis para a palavra: ULYSSES?
18. Quantos são os anagramas possíveis para a palavra: ULYSSES começando por U?
19. Quantos são os anagramas possíveis para a palavra: ULYSSES terminando por S?
20. Quantos são os anagramas possíveis para a palavra: ULYSSES começando por U e terminando por S?
21. Qual é o número possível de anagramas que se pode montar com as letras da palavra AMA?
Auxílio: p1=n(A)=2, p2=n(M)=1, N=Pr(3;2+1)
Pr(p;p1+p2)=(p1+p2)!/(p1!p2!)
Resposta:N=3!/(2!1!)=3
22. Qual é o número possível de anagramas que se pode montar com as letras da palavra AMAR?
Auxílio: N=(p1+p2+p3)!/(p1!p2!p3!),A=2,M=1,R=1
Resposta: N=4!/(2!1!1!)=12
23. Qual é o número possível de anagramas que se pode montar com as letras da palavra ARARUNA?
Auxílio: N=(p1+p2+p3+p4)!/(p1!p2!p3!p4!), A=3, R=2, N=1, U=1
Resposta: N=7!/(3!2!1!1!)=420
24. O número Pi com 10 algarismos (sem considerar a vírgula) é indicado por 3141592653. Quantas são as permutações diferentes que podemos construir com estes 10 algarismos
Auxílio: n(1)=n(3)=n(5)=2, n(2)=n(4)=n(6)=n(9)=1
Resposta: Pr(10,2+1+2+1+2+1+1)=10!/8=453600
25. Quantos são os anagramas possíveis com as letras da palavra: MATEMATICA?
Auxílio: A letra A aparece 3 vezes, a letra M aparece 2 vezes, a letra T aparece 2 vezes, a letras E aparece 1 vez , a letra I aparece 1 vez e a letra C aparece 1 vez.
Resposta: Pr(10;3+2+2+1+1+1) = 10!/[3!2!2!1!1!1!] =151200
Exercícios de permutações circulares
26. De quantos modos distintos 5 pessoas podem sentar-se em volta de uma mesa circular?
Auxílio: N=P(n-1)=(n-1)!, n=5
Resposta: N=1×2×3×4=24
27. De quantos modos distintos 5 pessoas podem sentar-se em volta de uma mesa retangular?
Auxílio: N=P(n-1)=(n-1)!, n=5
Resposta: N=1×2×3×4=24
Exercícios de combinações simples
28. Um indivíduo possui 25 livros diferentes. De quantas formas distintas ele poderá empacotar tais livros em grupos de 6 livros?
29. Quantos grupos de 3 pessoas podem ser montados com 8 pessoas?
Auxílio: C=C(m,p)=m!/[p!(m-p)!]; m=8,p=3
Resposta: C=8!/(3!5!)=(8×7×6)/(1×2×3)=56
30. Quantos grupos de 2 pessoas podem ser montados com 1000 pessoas?
Auxílio: C=C(m,p)=m!/[p!(m-p)!], m=1000, p=2
Resposta: C=1000!/(2!998!)=1000×999=999000
31. Quantas combinações com 4 elementos podem ser montadas com as 10 primeiras letras do alfabeto?
Conceito: Combinação
Auxílio: C=C(m,p)=m!/[p!(m-p)!], m=10, p=4
Resposta: C=10!/(4!6!)=(10×9×8×7)/(1×2×3×4)=210]
32. Quantas combinações com 4 elementos podem ser montadas com as 10 primeiras letras do alfabeto, de tal forma que sempre comecem pela letra A?
Auxílio: C=C(m1,p1).C(m-m1,p-p1), m=10, p=4, m1=1, p1=1
Resposta: C=C(1,1).C(9,3)=(1×9×8×7)/6=84
33. Quantas combinações com 4 elementos podem ser montadas com as 10 primeiras letras do alfabeto, de tal forma que sempre estejam juntas as letras A e B?
Auxílio: C=C(m1,p1).C(m-m1,p-p1), m=10, p=4, m1=2, p1=2
Resposta: C=C(2,2).C(8,2)=(1×8×7)/2=28
34. Quantas combinações com 4 elementos podem ser montadas com as 10 primeiras letras do alfabeto, de tal forma que não contenham nem as letras A e B?
Auxílio: C=C(m1,p1).C(m-m1,p-p1), m=10, p=4, m1=2, p1=0
Resposta: C=C(2,0).C(8,4)=(1×8×7×6×5)/24=70
35. Quantas combinações com 4 elementos podem ser montadas com as 10 primeiras letras do alfabeto, de tal forma que somente uma das letras A ou B esteja presente, mas não as duas?
Auxílio: C=C(m1,p1).C(m-m1,p-p1), m=10, p=4, m1=2, p1=1
Resposta: C=C(2,1).C(8,3)=(2×8×7×6)/6=112
36. Quantas combinações com 4 elementos podem ser montadas com as 10 primeiras letras do alfabeto, de tal forma que contêm 2 dentre as 3 letras A,B e C?
Auxílio: C=C(m1,p1).C(m-m1,p-p1), m=10, p=4, m1=3, p1=2
Resposta: C=C(3,2).C(7,2)=(3×7×6)/2=63
37. Em uma sala existem 40 pessoas, 18 mulheres e 22 homens. Quantas comissões podem ser montadas nesta sala contendo 3 mulheres e 5 homens?
38. Calcular o valor de m tal que 5 C(m+1,3)=2 C(m+2,2).
39. Quantos triângulos podem ser traçados contendo pontos de duas retas paralelas, sabendo-se que em uma reta existem 6 pontos e na outra reta existem 5 pontos?
40. Quantos quadriláteros convexos podem ser traçados contendo pontos de duas retas paralelas, sabendo-se que em uma reta existem 6 pontos e na outra reta existem 5 pontos?
41. Em uma classe com 16 pessoas, há 10 homens e 6 mulheres. Consideremos H um certo homem e M uma certa mulher. Quantos grupos podemos formar:
a. com 4 homens e 2 mulheres?
b. contendo H mas não M?
c. contendo M mas não H?
d. contendo H e M?
e. contendo somente H ou somente M?
42. Quantos números diferentes maiores do que 100 e menores do que 1000 podem ser construídos com os algarismos 1,2,3,4,5 e 6, sendo:
a. que cada algarismo aparece somente uma vez?
b. que cada algarismo pode repetir até 3 vezes?
c. os números pares sem repetição?
d. os números ímpares sem repetição?
e. os números pares com repetição?
f. os números ímpares com repetição?
43. Para resolver um assunto entre 6 professores e 4 alunos, devemos formar comissões com 3 professores e 2 alunos. Quantas são as possibilidades?
Resposta: N=C(6,3)×C(4,2)=30×6=180
44. Desejamos formar comissões de 6 pessoas entre cinco pais de alunos e quatro professores. Quantas comissões terão somente 1 professor?
45. Desejamos formar comissões de 6 pessoas entre cinco pais de alunos e quatro professores. Quantas comissões terão somente 2 professores?
46. Desejamos formar comissões de 6 pessoas entre cinco pais de alunos e quatro professores. Quantas comissões terão no mínimo 2 professores?
47. Desejamos formar comissões de 6 pessoas entre cinco pais de alunos e quatro professores. Quantas comissões terão no mínimo 3 professores?
48. Num plano existem 4 pontos, sendo que 3 deles são não colineares. Qual é o número possível de retas que passam por esses pontos?
Resposta: C(4,2)=6
49. Num plano colocamos n pontos, sendo que 3 deles são não colineares. Qual é o número possível de retas que passam por esses pontos?
Resposta: C(n,2)=n(n-1)/2
50. Quatro pontos são postos num plano, sendo que 3 deles são não colineares. Qual é o número possível de triângulos construídos com esses pontos?
Auxílio: C(3,2)=3 triângulos para cada ponto.
51. Qual é o número de diagonais de um polígono regular de n lados?
Resposta: N=C(n,2)-n=n(n-1)/2-n=n(n-3)/2
52. Qual é o número de diagonais de um cubo?
53. Qual é o número de diagonais de um prisma regular cuja base tem 5 lados?
54. Qual é o número de diagonais de um prisma regular cuja base tem 6 lados?
55. Qual é o número de diagonais de um prisma regular cuja base tem n lados?
56. Com as 5 vogais: A,E,I,O,U, construir o conjunto que contém todas as combinações tomadas 2 a 2.
57. Com as letras: A,B,C,D,E,F,G e H, determinar o número das permutações possíveis que começam por ABC.
Resposta: N=P(5)=120.
58. Quantas digonais possui um dodecágono?
Resposta: N=12×9/2=54
59. Quantas digonais possui o tetraedro regular?
Resposta: N=0
60. Quantas digonais possui um prisma triangular regular?
Resposta: N=0
Exercícios de combinações com repetição
61. Determinar o número de combinações com 4 elementos tomados com repetição de 7 livros.
Auxílio: Cr=Cr(m,p)=C(m+p-1,p), m=7, p=4
Resposta: Cr=Cr(7,4)=C(7+4-1,4)=C(10,4)=210
62. Determinar o número de combinações com repetição de 4 objetos tomados 2 a 2.
Auxílio: Cr=Cr(m,p)=C(m+p-1,p), m=4, p=2
Resposta: Cr=Cr(4,2)=C(4+2-1,2)=C(5,2)=10
Exercícios de arranjos simples
63. Quantos números diferentes com 1 algarismo, podemos formar com os algarismos: 0,1,2,3,4,5,6,7,8 e 9.
Resposta: N1=A(9,1)=9
64. Quantos números distintos com 2 algarismos diferentes, podemos formar com os dígitos: 0,1,2,3,4,5,6,7,8,9.
Auxílio: Os números iniciados por 0 não terão 2 dígitos e sua quantidade corresponde a A(9,1).
Resposta: N2=A(10,2)-A(9,1)=10×9-9=90-9=81
65. Quantos números distintos com 3 algarismos diferentes, podemos formar com os dígitos: 0,1,2,3,4,5,6,7,8 e 9.
Auxílio: Os números iniciados por 0 não terão 3 dígitos e sua quantidade corresponde a A(9,2).
Resposta: N3=A(10,3)-A(9,2)=720-720=648
66. Quantos números distintos com 4 algarismos diferentes, podemos formar com: 0,1,2,3,4,5,6,7,8 e 9.
Auxílio: Os números iniciados por 0 não terão 3 dígitos e sua quantidade corresponde a A(9,3).
Resposta: N4=A(10,4)-A(9,3)=5040-504=4536
67. Quantos números distintos menores que 10000 podem ser formados com algarismos diferentes da coleção: {0,1,2,3,4,5,6,7,8,9}.
Resposta: N=N1+N2+N3+N4=9+81+648+4536=5274
68. No sistema decimal de numeração, quantos números existem com 4 algarismos com 2 algarismos repetidos?
Auxílio: A quantidade de números distintos com 4 algarismos é 4536 e a quantidade total de números (com repetição ou não) com 4 algarismos é 9000.
Resposta: N=9000-4536=4464
69. Com as 5 vogais: A,E,I,O,U, obter o conjunto solução que contém todos os arranjos tomados 2 a 2.
70. Usando-se apenas os algarismos 1,3,5,7,9 quantos números com 3 algarismos podem ser montados?
Auxílio: A=A(m,p)=m!/(m-p)!, m=5, p=3
Resposta: A=5!/2!=60
71. Usando-se os algarismos 0,1,2,3,4,5,6,7,8,9 quantos números com 4 algarismos podem ser montados?
Auxílio: A=A(m,p)=m!/(m-p)!, m=10, p=4
Resposta: A=10!/6!=5040
72. Usando-se as 26 letras do alfabeto: A,B,C,D,...,Z quantos arranjos distintos com 3 letras podem ser montados?
Auxílio: A=A(m,p)=m!/(m-p)!, m=26, p=3
Resposta: A=26!/23!=26.25.24=15600
73. Com as 26 letras do alfabeto: A,B,C,D,...,Z e os algarismos 0,1,2,3,4,5,6,7,8,9, quantas placas de carros podem ser escritas contendo 3 letras seguidas de 4 algarismos?
Auxílio: A=A(m,p)=m!/(m-p)!, m=26, p=3, n=10, q=4
Resposta: A=(26!/23!).(10!/6!)=78624000
74. Consideremos um baralho contendo 52 cartas distintas.
a. Quantos pares distintos podem ser formados?
b. Quantas trincas distintas podem ser formados?
c. Quantas quadras distintas podem ser formados?
d. Quantos pares distintos podem ser formados tendo pelo menos um "Ás"?
e. Quantos pares distintas podem ser formados tendo pelo menos um "Ás" e um "Rei"?
f. Quantas trincas distintas podem ser formados tendo pelo menos um "Ás"?
g. Quantas trincas distintas podem ser formados tendo pelo menos um "Ás" e um "Rei"?
Exercícios de arranjos com repetição
75. Quantos números com 4 algarismos podemos formar com os algarismos: 0,1,2,3,4,5,6,7,8 e 9.
Resposta: Ar(10,4)=104=10000
76. Quantas palavras com 3 letras podemos formar com as 26 letras de nosso alfabeto?
Resposta: Ar(26,3)=263=17576
77. Quantas placas são possíveis em nosso sistema de trânsito, se em todas devem aparecer 3 letras seguidas por 4 números?
Resposta: N=Ar(26,3).Ar(10,4)=175760000
78. No sistema decimal de numeração, quantos números existem com 1 algarismo?
Resposta: N1=Ar(10,1)-Ar(10,0)=10-1=9
79. No sistema decimal de numeração, quantos números existem com 2 algarismos (repetidos ou não)?
Auxílio: São 10=Ar(10,1) os números com 2 dígitos iniciados por 0.
Resposta: N2=Ar(10,2)-Ar(10,1)=102-101=100-10=90
80. No sistema decimal de numeração, quantos números existem com 3 algarismos (repetidos ou não)?
Auxílio: Existem 100=Ar(10,2) números com 3 dígitos iniciados por 0.
Resposta: N3=Ar(10,3)- Ar(10,2)=103-102=900
81. No sistema decimal de numeração, quantos números existem com 4 algarismos (repetidos ou não)?
Auxílio: São 100=Ar(10,3) os números com 4 dígitos iniciados por 0.
Resposta: N4=Ar(10,4)-Ar(10,3)=104-103=9000
82. No sistema decimal de numeração, quantos números existem com n algarismos (repetidos ou não)?
Auxílio: São Ar(10,n-1) os números com n-1 dígitos iniciados por 0.
Resposta: N4=Ar(10,n)-Ar(10,n-1)=10n-10n-1=9×10n-1
83. Num sistema de numeração com a base tendo b algarismos, quantos números existem com n algarismos (repetidos ou não)?
Auxílio: São Ar(b,n-1) os números com n-1 dígitos iniciados por 0.
Resposta: N4=Ar(b,n)-Ar(b,n-1)=bn-bn-1=(b-1)×bn-1
84. No sistema decimal de numeração, existem quantos números pares com 4 algarismos (repetidos ou não)?
85. No sistema decimal de numeração, existem quantos números ímpares com 4 algarismos (repetidos ou não)?
86. No sistema decimal de numeração, existem quantos números pares diferentes com 4 algarismos?
87. No sistema decimal de numeração, existem quantos números ímpares diferentes com 4 algarismos?
Resposta: N=5.A(8,3)=1.680
88. No sistema decimal de numeração, existem quantos números pares com 4 algarismos (repetidos ou não)?
89. No sistema decimal de numeração, existem quantos números pares com 4 algarismos (repetidos ou não)?
90. Quantos números menores do que 10.000, podem ser formados com os algarismos 1,2,3 e 4?
Auxílio: N=Ar(4,1)+Ar(4,2)+Ar(4,3)+Ar(4,4)
Resposta: N= 41+42+43+44= 4+16+64+256=340
91. Quantos números de 3 dígitos podem ser formados com 5 algarismos?
Auxílio:Fórmula Ar(m,p)=mp, m=5, p=3
Resposta: Ar=53=125
Exercícios de arranjos condicionais
92. Quantos arranjos dos elementos A,B,C,D,E,F,G tomados 4 a 4, começam com duas letras dentre A,B e C?
Auxílio: N=A(m1,p1).A(m-m1,p-p1)
m=7, p=4, m1=3, p1=2
Resposta: N=A(3,2).A(4,2)=3!/1! . 4!/2!=72
93. Com os algarismos 0,1,2,3,4,5,6,7,8,9, tomados 6 a 6, quantos números podem ser formados tendo nas duas posições iniciais algarismos que são números ímpares?
Auxílio: N=A(m1,p1).A(m-m1,p-p1), m=10, p=6, m1=5, p1=2
Resposta: N=A(5,2).A(5,4)=5!/3! . 5!/1!=2400
94. Dentre os arranjos de 5 letras: A,B,C,D,E, tomados 3 a 3, quantos contêm a letra E?
Auxílio: N=(p-p1+1).A(m1,p1).A(m-m1,p-p1), m=5, p=3, m1=1, p1=1
Resposta: N=(3-1+1).A(1,1).A(4,2)=36
95. Dentre os arranjos de 5 letras: A,B,C,D,E, tomados 3 a 3, quantos contêm juntas as duas letras A e B?
Auxílio: N=(p-p1+1).A(m1,p1).A(m-m1,p-p1), m=5, p=3, m1=2, p1=2
Resposta: N=(4-2+1).A(2,2).A(3,1)=18
96. Dentre os arranjos de 6 letras: A,B,C,D,E,F, tomados 4 a 4, quantos contêm a letra A?
Auxílio: N=(p-p1+1).A(m1,p1).A(m-m1,p-p1), m=6, p=4, m1=1, p1=1
Resposta: N=(4-1+1).A(1,1).A(5,3)=240
97. Dentre os arranjos de 6 letras: A,B,C,D,E,F, tomados 4 a 4, quantos contêm juntas 2 das 3 letras A,B e C?
Auxílio: N=(p-p1+1).A(m1,p1).A(m-m1,p-p1), m=6, p=4, m1=3, p1=2
Resposta: N=(4-2+1).A(3,2).A(3,2)=108
98. Dentre os arranjos de 4 letras: A,B,C,D, tomados 3 a 3, quantos contêm a letra A?
Auxílio: N=(p-p1+1).A(m1,p1).A(m-m1,p-p1), m=4, p=3, m1=1, p1=1
Resposta: N=(3-1+1).A(1,1).A(3,2)=18
99. Dentre os arranjos de 4 letras: A,B,C e D, tomados 3 a 3, quantos começam pelas letras A e B?
Auxílio: N=A(m1,p1).A(m-m1,p-p1), m=4, p=3, m1=2, p1=2
Resposta: N=A(2,2).A(2,1)=4
100. Dentre os arranjos de 4 letras: A,B,C e D, tomados 3 a 3, quantos contêm juntos as letras A e B?
Auxílio: N=(p-p1+1).A(m1,p1).A(m-m1,p-p1), m=4, p=3, m1=2, p1=2
Resposta: N=(3-2+1).A(2,2).A(2,1)=8
Exercícios com o fatorial
101. Se C(n,2)=28, qual é o valor de n?
Resposta: n=8.
102. Existe um número n natural tal que C(n,3)=C(n,2)?
103. Usando o desenvolvimento binomial de (1+1)n, demonstrar que:
C(n,0)+C(n,1)+C(n,2)+...+C(n,n)=2n
104. Usar o PIF (Princípio de Indução Matemática), para demonstrar que:
(p+1)·C(n,p+1)=(n-p)·C(n,p).
105. Usar o PIF (Princípio de Indução Matemática), para demonstrar que:
n·C(n-1,p)=(n-p)·C(n,p).
106. Se A(n,2)=42, qual é o valor de n?
Resposta: n=7.
107. Justificar a afirmação: "Se n é um número primo e p<n, então n é um divisor de C(n,p)."
108. Usar o PIF (Princípio de Indução Matemática), para demonstrar que:
2·4·6·8·10·...2n=(2n)n!
109. Usar o PIF (Princípio de Indução Matemática), para demonstrar que:
1·3·5·7·9· ... (2n-1)=(2n)!/[2n·n!]
Exercícios com a regra do produto
117. Numa festa, três meninos devem ser apresentados a 5 meninas. De quantas maneiras possíveis eles podem ser apresentados?
Auxílio: N=p×q, p=3, q=5
Resposta: N=3×5=15
118. Existem quatro estradas ligando duas cidades A e B, e três estradas ligando as cidades B e C. De quantos modos diferentes uma pessoa pode se deslocar da cidade A até a cidade C?
Auxílio: N=p×q, p=4, q=3
Resposta: N=4×3=12
119. Uma sala possui 3 portas. Quantas possibilidades existem para que uma pessoa possa entrar e sair desta sala?
Auxílio: N=p×q, p=3, q=3
Resposta: N=3×3=9
Mais exercícios do Princípio fundamental da contagem ou Princípio multiplicativo
1) - Quantas placas (distintas) de automóveis, poderão ser emitidas; com o sistema atual de emplacamento?
2) Obtenha o total de linhas telefônicas que podem ser instaladas, com o prefixo 436, se os telefones têm 7 algarismos (ex 436-0000).
3) Quantos números ímpares de 3 algarismos distintos, são possíveis utilizando os algarismos: 1, 3, 4, 5, 7, 8. ?
4) Uma garota tem 3 saias e 4 blusas. De quantas maneiras ela poderá sair usando saia e blusa sem repetir o mesmo conjunto?
5 ) Um rapaz dispõe de 6 calças, 9 camisas e 2 pares de sapatos. Com estas peças, quantos conjuntos diferentes de calça, camisa e sapato ele pode formar para vestir-se?
6) Para a diretoria de uma firma concorrem 4 candidatos a presidente e 2 a vice-presidente. Quantas chapas podem ser formadas?
7) Um salão possui 10 portas. Pergunta-se:
a) quantas são as possibilidades de uma pessoa entrar no salão e sair dele?
b) quantas são as possibilidades de uma pessoa entrar por uma porta e sair por outra diferente?
8) Uma bandeira deve ser formada por três faixas de cores diferentes escolhidas entre 10 cores diferentes.
De quantas maneiras essa bandeira pode ser composta?
9) Quantos números de 3 algarismos podemos formar com os algarismos 1, 2, 4, 8 e 9?
10) Quantos números de 4 algarismos distintos podemos formar com os algarismos 3, 5, 6, 7 e 8?
11) Dados os algarismos 1,3, 4, 7 e 8, pergunta-se:
a) quantos números de 3 algarismos podemos formar?
b) quantos números de 3 algarismos, iniciando por 8, podemos formar?
c) quantos números de 3 algarismos, não iniciando por 4, podemos formar?
d) quantos números de 3 algarismos distintos terminam por 3?
12) Numa cidade os números de telefone tem 6 algarismos. Determine:
a) o número de telefones que podem ser formados, sabendo-se que os números não podem começar por zero;
b) quantos telefones existem com prefixos 47;
c) quantos telefones terminam por 3.
13) (FGV/2005) Em uma gaveta de armário de um quarto escuro há 6 camisetas vermelhas, 10 camisetas brancas e 7 camisetas pretas. Qual é o número mínimo de camisetas que se deve retirar da gaveta, sem que se vejam suas cores, para que:
a) Se tenha certeza de ter retirado duas camisetas de cores diferentes.
b) Se tenha certeza de ter retirado duas camisetas de mesma cor.
c) Se tenha certeza de ter retirado pelo menos uma camiseta de cada cor.
14) (Enem/2004)No Nordeste brasileiro, é comum encontrarmos peças de artesanato constituídas por garrafas preenchidas com areia de diferentes cores, formando desenhos. Um artesão deseja fazer peças com areia de cores cinza, azul, verde e amarela, mantendo o mesmo desenho, mas variando as cores da paisagem (casa, palmeira e fundo), conforme a figura.
O fundo pode ser representado nas cores azul ou cinza; a casa, nas cores azul, verde ou amarela; e a palmeira, nas cores cinza ou verde. Se o fundo não pode ter a mesma cor nem da casa nem da palmeira, por uma questão de contraste, então o número de variações que podem ser obtidas para a paisagem é
a) 6. b) 7. c) 8. d) 9. e) 10.
15) (UFES/2002) Num aparelho telefônico, as dez teclas numeradas estão dispostas em fileiras horizontais, conforme indica a figura a seguir. Seja N a quantidade de números de telefone com 8 dígitos, que começam pelo dígito 3 e terminam pelo dígito zero, e, além disso, o 2o e o 3o dígitos são da primeira fileira do teclado, o 4o e o 5o dígitos são da segunda fileira, e o 6o e o 7o são da terceira fileira.
O valor de N é
a) 27 b) 216 c) 512 d) 729 e) 1.331
16) (UFC/2002) A quantidade de números inteiros, positivos e ímpares, formados por três algarismos distintos, escolhidos dentre os algarismos 0, 1, 2, 3, 4, 5, 6, 7, 8 e 9, é igual a:
a) 320 b) 332 c) 348 d) 360 e) 384
17)(UFAL/200) Quantos números pares de quatro algarismos distintos podem ser formados com os elementos do conjunto A={0,1,2,3,4}?
a) 60 b) 48 c) 36 d) 24 e) 18
18)(UFPI/2000) Escrevendo-se em ordem decrescente todos os números de cinco algarismos distintos formados pelos algarismos 3, 5, 7, 8 e 9, a ordem do número 75389 é:
a) 54 b) 67 c) 66 d) 55 e) 56
19)(UFAL/99) Com os elementos do conjunto {1, 2, 3, 4, 5, 6, 7} formam-se números de 4 algarismos distintos. Quantos dos números formados NÃO são divisíveis por 5?
a) 15 b) 120 c) 343 d) 720 e) 840
20)(ITA/2001) Considere os números de 2 a 6 algarismos distintos formados utilizando-se apenas 1, 2, 4, 5, 7 e 8. Quantos destes números são ímpares e começam com um dígito par?
a) 375 b) 465 c) 545 d) 585 e) 625
21)(UNESP/2000) Um turista, em viagem de férias pela Europa, observou pelo mapa que, para ir da cidade A à cidade B, havia três rodovias e duas ferrovias e que, para ir de B até uma outra cidade, C, havia duas rodovias e duas ferrovias. O número de percursos diferentes que o turista pode fazer para ir de A até C, passando pela cidade B e utilizando rodovia e trem obrigatoriamente, mas em qualquer ordem, é:
a) 9. b) 10. c) 12. d) 15. e) 20.
22)(UECE/99) Quantos números ímpares, cada um com três algarismos, podem ser formados com os algarismos 2,3,4,6 e 7, se a repetição de algarismos é permitida?
a) 60 b) 50 c) 40 d) 30
GABARITO:
Respostas
1) 175760000 2) 10000 3) 80 4) 12 5)108 6) 8 7a) 100 7b) 90 8) 720 9)125
10) 120 11a) 125 11b) 25 11c)100 11d) 12 12a) 900000 12b)10000 12c) 100000
13) a)11 b)4 c)18 14)B 15)D 16)A 17)A 18)C 19)D 20)D 21)B 22)B