13/04/2020

EQUAÇÕES INCOMPLETAS DO 2º GRAU

EQUAÇÕES INCOMPLETAS DO 2º GRAU


Resolver uma equação é determinar todas as suas soluções. Vejamos, através de exemplos, como se resolvem as equações incompletas do 2º grau

1º CASO:  Equação da forma ax² + c = 0


Exemplos:

Resolver as seguintes equações, sendo U = R

1)      x² - 25 = 0
x² = 25
x = + ou - √ 25
x = + ou – 5

Logo : V = { +5, -5}


2)      2x² - 18 = 0
2x²= 18
x² = 18 / 2
x² = 9

x = + ou - √9
x = + ou – 3

Logo V = { +3, -3}

3)      7x²- 14 = 0
7x²= 14
x²= 14/ 7
x² = 2

x = + ou - √2

Logo V = { +√2, -√2}


4)      x ²+ 25 = 0
x²= -25
x =  + ou - √-25 = nenhum real, pois (nenhum real)² = -25

Logo V = vazio



EXERCÍCIOS


1)      Resolva as seguintes equações do 2º grau , sendo U = R

a)      x²- 49 = 0  (R: 7, -7)
b)      x² = 1  (R: 1, -1)
c)      2x² - 50 = 0 (R: 5, -5)
d)      7x² - 7 = 0 (R: 1, -1)
e)      4x²= 36 (R: 3, -3)   ( marcar)
f)        5x² - 15 = 0 (R: √3, -√3)
g)      21 =  7x²  (R: √3, -√3)
h)      5x² + 20 = 0 (R: vazio)
i)        4x² - 49 = 0 ( R: 7/2, -7/2)
j)        16 = 9x² (R: 4/3 , -4/3)
k)      3x² + 30 = 0 (R: vazio)
l)        9x² - 5 = 0 (R: √5/3 , -√5/3)

2)      Resolva as equações do 2º grau, sendo U = R

a)      7x² + 2 = 30 (R: 2, -2)
b)      2x² - 90 = 8 (R: 7, -7)
c)      4x²- 27 = x² (R: 3, -3)
d)      8x² = 60 – 7x² (R: 2, -2)

3)      Resolva as equações do 2º grau, sendo U = R

a)      3 (x² - 1) = 24 (R: 3, -3)
b)      2( x² - 1) = x² + 7 (R: 3, -3)
c)      5(x² - 1) = 4(x² + 1) (R: 3, -3)
d)      (x -3) (x – 4) + 8 = x  (R: 2, -2)


2° CASO: Equações da forma ax² + bx = 0 ( c = 0)
Propriedade: Para que um produto seja nulo é preciso que um dos fatores seja zero .

Exemplos

1) resolver x² - 5x = 0
fatorando x ( x – 5) = 0

deixando um dos fatores nulo temos x = 0

e o outro x – 5 = 0 , passando o 5 para o outro lado do igual temos x = 5

logo V= (0 e 5)

2) resolver: 3x² - 10x = 0
fatorando: x (3x – 10) = 0

deixando um dos fatores nulo temos x = 0

Tendo também 3x – 10 = 0
3x = 10
x = 10/3

logo V= (0 e 10/3)

Observe que, nesse caso, uma das raízes é sempre zero.


EXERCÍCIOS

1) Resolva as seguintes equações do 2° grau.

a) x² - 7x = 0 (R: 0 e 7)
b) x² + 5x = 0 (R: 0 e -5)
c) 4x² - 9x = 0 (R: 0 e 9/4)
d) 3x² + 5x =0 (R: 0 e -5/3)
e) 4x² - 12x = 0 (R: 0 e 3)
f) 5x² + x = 0 (R: 0 e -1/5)
g) x² + x = 0 (R: 0 e -1)
h) 7x² - x = 0 (R: 0 e 1/7)
i) 2x² = 7x (R: 0 e 7/2)
j) 2x² = 8x (R: 0 e 4)
k) 7x² = -14x (R: 0 e -2)
l) -2x² + 10x = 0 (R: 0 e 5)

2) Resolva as seguintes equações do 2° grau

a) x² + x ( x – 6 ) = 0 (R: 0 e 3)
b) x(x + 3) = 5x (R: 0 e 2)
c) x(x – 3) -2 ( x-3) = 6 (R: 0 e 5)
d) ( x + 5)² = 25 (R: 0 e -10)
e) (x – 2)² = 4 – 9x (R: 0 e -5)
f) (x + 1) (x – 3) = -3 (R: 0 e 2)

Potenciação e Radicais

POTENCIAÇÃO E RADICAIS

POTENCIAÇÃOPotência é um produto de fatores iguais.

aⁿ = a .a . a.....................a (n fatores)

O número real a é chamado de base e o número natural n é chamado de expoente da potência.

Exemplos

a) 2⁴ = 2 . 2 . 2 .2 = 16
b) (-7)² = (-7) . (-7) = +49
c) (-2)³ = (-2) . (-2) . (-2) = -8
d) (1/2)² = (1/2) . (1/2) = ¼



CASOS PARTICULARES


1) Toda potência de expoente 1 é igual à base.

a¹ = a

exemplo: (-3)¹ = -3

2) Toda potência de espoente zero é igual a 1.

a⁰ = 1

exemplo: (-5)⁰ = 1

3) Toda potência de expoente negativo é igual ao inverso da potência de expoente positivo.

a⁻ⁿ = 1/aⁿ  (a≠0 e n inteiro)

exemplo: 2⁻³ = 1/2³ = 1/8


EXERCÍCIOS

1) Calcule

a) 7² = (R:49)
b) 4² = (R: 16)
c) 2⁵ = (R: 32)
d) 8¹ = (R: 8)
e) 9⁰ = (R: 1)
f) (-9)² = (R: 81)
g) (-5)³ = (R: -125)
h) (-1)⁷ = (R: -1)
i) (-15)¹ = (R: -15)
j) (-10)⁰ = (R: 1)
k) (+3)⁴ = (R: 81)
l) (-1)⁵⁶ = (R: 1)
m) (-10)⁵ = (R: -100000)



2) Calcule:

a) 2⁵ = (R: 32)
b) (-2)⁵ = (R: -32)
c) -2⁵ = (R: -32)
d) 2⁴ = (R: 16)
e) (-2)⁴ = (R: 16)
f) -2⁴ = (R: -16)
g) –(-3)⁴ = (R: -81)
h) –(-5)³ = (R: 125)
i) –(+2)⁶ = (R: -64)



3) Calcule:

a) (3/2)² = (R: 9/4)
b) (-1/2)⁴ = (R: 1/16)
c) (-1/3)³ = (R: (-1/27))
d) (-4/5)⁰ = (R: 1)
e) (-5/9)¹ = (R: (-5/9))
f) (+7/8)¹ = (R: 7/8)
g) (-1/2)⁵ = (R: (-1/32))
h) (-4/3)² = (R: 16/9)



4)Calcule:

a) 7⁻² = (R: 1/49)
b) 5⁻³ = (R: 1/125)
c) 2⁻⁴ = (R: 1/16)
d) 2⁻⁵ = (R: 1/32)
e) (-3)⁻² = (R: 1/9)
f) –(-3)⁻² = (R: (-1/9))



5)Calcule:

a) (3/2)⁻² = (R: 4/9)
b) (1/2)⁻³ = (R: 8)
c) (2/3)⁻² = (R: 9/4)
d) (-1/4)⁻² = (R: 16)
e) (5/2)⁻³ = (R: 8/125)
f) (-1/2)⁻⁴ = (R: 16)



6 Calcule:

a) (-4)² - 3 = (R: 13)
b) 1 + (-2)³ = (R: -7)
c) -2 + (-5)² = (R: 23)
d) 15 + (-1)⁷ -2 = (R: 12)
e) (-2)² + (-3)³ +1 = (R: -22)
f) (-9)² -2 –(-3) -6 = (R: 76)
g) (-2) . (-7) + (-3)² = (R: 23)
h) (-1)³ + 3 + (-2) . (-5) = (R: 12)



7) Calcule o valor das expressões:

a) (-4/3)² - 1 = (R: 7/9)
b) 3/2 + (-1/2)² -8 = (R: (-25/4))
a) (1 - ½)² + (-1 + ½)³ = (R: 1/8)
b) (1 + ½)² - ¼ = (R: 2)

POTÊNCIA COM MESMA BASE

Para facilitar as operações entre potencias, emprega-se as seguintes propriedades:

1) aⁿ . aⁿ = aⁿ ⁺ ⁿ
exemplo: 2³ . 2⁸ = 2¹¹

2) aⁿ : aⁿ = aⁿ ⁻ ⁿ
exemplo: 3¹⁰ : 3² = 3⁸

3) (aⁿ)ⁿ = aⁿ ˙ ⁿ
exemplo: (7³)⁴ = 7³ ˙ ⁴ = 7¹²

4) (a . b )ⁿ = aⁿ . bⁿ
exemplo (5 . 3)² = 5². 3²


EXERCÍCIOS

1) Classifique como verdadeiro ou falso:

a) 5⁷ . 5² = 5⁹ (v)
b) 3⁹ : 3⁴ = 3⁵ (v)
c) 8⁵ : 8⁻³ = 8² (f)
d) 7⁵ – 7³ = 7² (f)
e) 7⁶⁻⁵ = 7⁶ / 7⁵ (v)
f) (7³)² = 7⁵ (f)
g) ( 5 + 2 )² = 5² + 2² (f)
h) 3² + 3³ + 3⁵ = 3¹⁰ (f)

2) Simplifique, aplicando a propriedades de potência:

a) (3 . 7)⁵ . ( 3 .7 )² = (R: 3⁷ . 7⁷)
b) (5xy²) . (2x²y³) = (R: 10x³y⁵)
c) ( a² . b)² . (a . b)³ = (R: a⁷ . b⁵)
d) (7xy²)² . (x³y²)⁴ = (R: 49x¹⁴y¹²)

3) Calcule:

a) (-3)² + 6² = (R: 45)
b) 3² + (-5)² = (R: 34)
c) (-2)³ - (-1)³ = (R: -7)
d) 5² - 3⁴ - (-1)⁹ = (R: -55)
e) (-10)² - (-3) = (R: 103)
f) 5 . (-3)² + 1 - 6⁰ = (R: 45)
g) 4 . (-1) . (-3)² = (R: -36)
h) -4 . 6 . (-1)⁷ = (R: 24)
i) (-7)² - 4 . 2 . (-2) = (R: 65)
j) (-6)² - 4 . (-3) . (-3) = (R: 0)




RADICAIS
Sabemos que:

a) √25 = 5 porque 5² = 25
b) ³√8 = 2 porque 2³ = 8
c) ⁴√16 = 2 porque 2⁴ = 16

Sendo a e b numeros reais positivos e n um número inteiro maior que 1 temos por definição que:

ⁿ√a = b -- bⁿ = a

lembramos que os elementos de ⁿ√a = b são assim denominados

√ = sinal do radical
n = índice do radical
a = radicando
b = raiz

nota:

Quando o índice é 2 , usualmente não se escreve.

Exemplos :

a) ²√9 = √9
b) ²√15 = √15

ÍNDICE PAR

Se n é para, todo número real positivo tem duas raízes.
Veja:

(-7)² = 49
(+7)² = 49

sendo assim √49 = 7 ou -7

Como o resultado de uma operação deve ser único vamos convencionar que:

√49 = 7

-√49 = -7

exemplos

a) √25 = 5
b) -√25 = -5
c) ⁴√16 = 2
d) -⁴√16 = -2

NOTA: não existe raiz de um número negativo se o índice do radical for para.
Veja:
a) √-9 = nenhum real porque (nenhum real)² = -9
b) √-16 = nenhum real porque (nenhum real)² = -16


ÍNDICE ÍMPAR

Se n é ímpar ], cada número real tem apenas uma única raiz
Exemplos:

a) ³√8 = 2 porque 2³ = 8
b) ³√-8 = -2 porque (-2)³ = -8
c) ⁵√1 = 1 porque 1⁵ = 1
d) ⁵√-1 = -1 porque (-1)⁵ = -1

Radicando positivo a raiz é positiva
Radicando negativo e índice ímpar a raiz é negativa

EXERCÍCIOS

1) Determine as raízes:

a) √49 = (R: 7)
b) √100 = (R: 10)
c) √0 = (R: 0)
d) ³√8 = (R: 2)
e) ³√-8 = (R: -2)
f) ³√125 = (R: 5)
g) ³√-14 = (R: -1)
h) ⁴√1 = (R: 1)
i) ⁴√16 = (R: 2)
j) ³√1000 = (R: -10)
k) ⁴√81 = (R: 3)
l) ⁵√0 = (R: 0)
m) ⁵√-32 = (R: -2)
n) ⁶√64 = (R: 2)
o) ⁷√-1 = (R: -1)

2) Calcule

a) √25 = (R: 5)
b) -√25 = (R: -5)
c) √-25 = não existe
d) -√-25 = não existe
e) ⁴√81 = (R: 3)
f) ⁴√-81 = não existe
g) -⁴√81 = (R: -3)
h) ⁶√1 = (R: 1)
i) -⁶√1 = (R: -1)
j) ⁶√-1 = não existe

3) Calcule:

a) 7 - √25 = (R: 2)b) ⁵√0 + ⁶√1 = (R: 1)
c) ³√0 + ³√-125 = (R: -5)
d) ⁴√81 + ⁵√1 = (R: 4)
e) 4 + ³√ -1 = (R: 3)
f) 5 - ³√-8 = (R: 7)
g) 7. ³√-1 -5 = (R: -12)
h) 2.√49 -3.√1 = (R: 11)

3) Calcule:

a) (7 + √25 ) / 4 = (R: 3)
b) (7 - √25 ) / 4 = (R: ½ )
c) (-6 + √100) / 2 = (R: 2)
d) (-6 - √100) / 2 = (R: -8)
e) (√36 + 2.√9) / 3 = (R: 4)


POTENCIAÇÃO COM EXPOENTE FRACIONÁRIO

Se 3 é um número real positivo e 2/4 é um número racional, com 2 e 4 inteiros definimos:

Exemplos

a) 2²⁾⁴ = ⁴√2²
b) 5³⁾⁴ = ⁴√5³
c) 7¹⁾² = √7

EXERCÍCIOS

1) Escreva em forma de potência com expoente fracionário:

a) ³√7² = (R: 7²⁾³)
b) ⁵√a³ = (R: a³⁾⁵)
c) √10 = (R: 10¹⁾²)
d) ⁴√a³ = (R: a³⁾⁴)
e) √x⁵ = (R: x ⁵⁾²)
f) ³√m = (R: m¹⁾³ )

2) Escreva em forma de radical:

a) 5³⁾⁴ = (R: ⁴√5³)
b) 5¹⁾² = (R: √5)
c) a²⁾⁵ = (R: ⁵√a² )d) a¹⁾³ = (R: ³√a)
e) 2⁶⁾⁷ = (R: ⁷√2⁶)
f) 6¹⁾² = (R: √6)
PROPRIEDADES DOS RADICAIS


Para os radicais de radicandos positivos valem as seguintes propriedades:

1º Propriedade:

1) √49 = √7² = 7
2) ³√125 = ³√5³ = 5

Exemplos
a) √3² =3
b) ³√5³ = 5
c) ⁴√10⁴ = 10

2º Propriedade:

1) √4.25 = √100 = 10
2) √4 . √25 = 2 . 5 = 10

Comparando 1 e 2, temos √4.25 = √4 . √25

Exemplos

a) √2.7 = √2 . √7
b) √8.x = √8 . √x
c) ³√5.a = ³√5 . ³√a
d) ⁴√5.7.9 = ⁴√5 . ⁴√7 . ⁴√9

EXERCÍCIOS

1) Aplique a 1º propriedade:

a) √8² = (R: 8)
b) ³√7³ = (R: 7)
c) ⁵√x⁵ = (R: x )
d) √(7a)² = (R: 7a)
e) ³√(5x)³ = (R: 5x)
f) ⁴√(7x)⁴ = (R: 7x)
g) √(a²m)² = (R: a²m)
h) √(a + 3)² = (R: a + 3)

2) Aplique a 2º propriedade:

a) √5 .7 = (R: √5 . √7)
b) ³√2.8 = (R: ³√2 . ³√8)
c) ³√5X = (R: ³√5 . ³√X)
d) √10xy = (R: √10 . √x . √y)
e) √5x²m = (R: √5 . √x² .√m )

3º) Propriedade

Exemplos

1) √4/25 = 2/5
2) √4/√25 = 2/5



SIMPLIFICAÇÃO DE RADICAIS

Simplificar um radical significa escrevê-lo sob a forma mais simplis e equivalentes ao radical dado

1º) CASO: O índice e o expoente do radicando são divisíveis por um mesmo número (diferente de zero)

Exemplos

a) ¹²√3¹⁰ = ¹²⁾²√3¹⁰⁾² = ⁶√3⁵
b) ⁹√7¹² = ⁹⁾³√7¹²⁾³ = ³√7⁴

Conclusão:
Um radical não se altera quando o expoente do radicando e o índice do radical são divididos pelo mesmo número.

EXERCÍCIOS

1) Simplifique os radicais :

a) ⁴√5⁶ = (R: √5²)b) ⁸√7⁶ = (R: ⁴√7³)
c) ⁶√3⁹ = (R: √3³)
d) ¹⁰√8¹² = (R: ⁵√8⁶)
e) ¹²√5⁹ = (R: ⁴√5³)
f) ⁶√x¹⁰ = (R: ³√x⁵)
g) ¹⁰√a⁶ = (R: ⁵√a³)
h) ¹⁵√m¹⁰ = (R: ³√m²)i) ¹⁰√x⁵ = (R: √x )j) ⁸√a⁴ = (R: √a)

2º CASO : O expoente do radical é um múltiplo do índice.

O radicando pode ser colocado Dora do radical com um expoente igual ao quociente do expoente anterior pelo índice.

Exemplos

a) √7¹⁰ = 7⁵ (Dividimos 10 por 2)
b) ³√7¹² = 7⁴ (Dividimos 12 por 3)
c) ⁴√7²⁰ = 7⁵ (Dividimos 20 por 4)
d) √a⁶ = a³ ( Dividimos 6 por 2)

EXERCÍCIOS

1) Simplifique os radicais:

a) √7⁸ = (R: 7⁴)
b) ³√5⁹ = (R: 5³)
c) ⁴√7¹² = (R: 7³)
d) ⁵√9¹⁵ = (R: 9³)
e) ³√3¹⁵ = (R: 3⁵)
f) ⁴√6⁸ = (R: 6²)
g) √9²⁰ = (R: 9¹⁰)
h) √x² = (R: x)
i) √x⁴ = (R: x²)
j) √a⁶ = (R: a³)

3º CASO: O expoente do radicando é maior do que o índice

Decompomos o radicando em fatores de modo que um dos fatores tenha expoente múltiplo do índice

Exemplos:

a) √x¹¹ = √x¹⁰. √x = x⁵.√x
b) ⁴√a⁷ = ⁴√a⁴. ⁴√a³ = a. ⁴√a³


EXERCÍCIOS

1) Simplifique os radicais

a) √a⁷ = (R: a³.√a)
b) ³√m⁷ = (R: m².³√m)
c) ⁴√m⁷ = (R: m.⁴√m³)
d) ⁵√x⁶ = (R: x.⁵√x)
e) ⁷√a⁹ = (R: a ⁷√a²)
f) √7⁵ = (R: 7².√7 ou 49√7)
g) √2⁹ = (R: 2⁴.√2 ou 16√2)
h) ³√5¹⁰ = (R: 5³.³√5 ou 125.³√5)
i) ⁴√7⁹ = (R: 7².⁴√7 ou 49.⁴√7)
j) ⁵√6⁸ = (R: 6.⁵√6³ ou 6.⁵√216)

2) Fatore o radicando e simplifique os radicais:

a) √8 = (R: 2√2)
b) √27 = (R: 3√3)
c) ³√81 = (R: 3.³√3)
d) ⁴√32 = (R: 2.⁴√2)
e) √50 = (R: 5√2)
f) √80 = (R: 4√5)
g) √12 = (R: 2√3)
h) √18 = (R: 3√2)
i) √50 = (R: 5√2)
j) √8 = (R: 2√2)
k) √72 = (R: 6√2)
l) √75 = (R: 5√3)
m) √98 = (R: 7√2)
n) √99 = (R: 3√11)
o) √200 = (R: 10√2)


3) Calcule

a) √36 - √49 = (R: -1)
b) ³√8 + √64 = (R: 10)
c) -√100 - ³√64 = (R: -14)
d) -³√125 - ³√-1 = (R: -4)
e) ⁵√1 + √9 - ³√8 = (R: 2)
f) √100 +⁵√-32 + ⁶√0 = (R: 8)
g) ⁴√16 + ⁷√1 - ⁵√-1 = (R: 4)


OPERAÇÕES COM RADICAISRADICAIS SEMELHANTES
Radicais semelhantes são os que têm o mesmo índice e o mesmo radicando

Exemplos de radicais semelhantes

a) 7√5 e -2√5
b) 5³√2 e 4³√2

Exemplos de radicais não semelhantes

a) 5√6 e 2√3
b) 4³√7 e 5√7



ADIÇÃO E SUBTRAÇÃO

1º CASO : Os radicais não são semelhantes
Devemos proceder do seguinte modo:

a) Extrair as raízes (exatas ou aproximadas)
b) Somar ou subtrair os resultados

Exemplos

1) √16 + √9 = 4 + 3 = 7
2) √49 - √25 = 7 – 5 = 2
3) √2 + √3 = 1,41 + 1,73 = 3,14

Neste último exemplo, o resultado obtido é aproximado, pois √2 e √3 são números irracionais (representação decimal infinita e não periódica)

EXERCÍCIOS

1) Calcule

a) √9 + √4 = (R: 5)
b) √25 - √16 = (R: 1)
c) √49 + √16 = (R: 11)
d) √100 - √36 = (R: 4)
e) √4 - √1 = (R: 1)
f) √25 - ³√8 = (R: 3)
g) ³√27 + ⁴√16 = (R: 5)
h) ³√125 - ³√8 = (R: 3)
i) √25 - √4 + √16 = (R: 7)
j) √49 + √25 - ³√64 = (R: 8)


2º CASO: Os radicais são semelhantes.

Para adicionar ou subtrair radicais semelhantes, procedemos como na redução de termos semelhantes de uma soma algébrica.

Exemplos:

a) 5√2 + 3√2 = (5+3)√2 = 8√2
b) 6³√5 - 2³√5 = (6 – 2) ³√5 = 4³√5
c) 2√7 - 6√7 + √7 = (2 – 6 +1) √7 = -3√7

EXERCÍCIOS

1) Efetue as adições e subtrações:

a) 2√7 + 3√7 = (R: 5√7)
b) 5√11 - 2√11 = (R: 3√11)
c) 8√3 - 10√3 = (R: -2√3)
d) ⁴√5 + 2⁴√5 = (R: 3⁴√5)
e) 4³√5 - 6³√5 = (R: -2³√5)
f) √7 + √7 = (R: 2√7)
g) √10 + √10 = (R: 2√10)
h) 9√5 + √5 = (R: 10√5)
i) 3.⁵√2 – 8.³√2 = (R: -5.³√2)
j) 8.³√7 – 13.³√7 = (R: -5.³√7)
k) 7√2 - 3√2 +2√2 = (R: 6√2)
l) 5√3 - 2√3 - 6√3 = (R: -3√3)
m) 9√5 - √5 + 2√5 = (R: 10√5)
n) 7√7 - 2√7 - 3√7 = (R: 2√7)
o) 8. ³√6 - ³√6 – 9. ³√6 = (R: -2. ³√6)
p) ⁴√8 + ⁴√8 – 4. ⁴√8 = (R: -2. ⁴√8)

3º CASO: Os radicais tornam-se semelhantes depois de simplificados.

Exemplos

a)5√3 + √12
..5√3 + √2².3
..5√3 + 2√3
..7√3

b)√8 + 10√2 - √50
..√2².√2 +10√2 - √5². √2
..2√2 + 10√2 - 5√2
..7√2

EXERCÍCIOS

1) Simplifique os radicais e efetue as operações:

a) √2 + √32= (R: 5√2)
b) √27 + √3 = (R: 4√3)
c) 3√5 + √20 = (R: 5√5)
d) 2√2 + √8 = (R: 4√2)
e) √27 + 5√3 = ( R: 8√3)
f) 2√7 + √28 = (R: 4√7)
g) √50 - √98 = (R: -2√2)
h) √12 - 6√3 = (R: -4√3)
i) √20 - √45 = (R: -√5)

2) Simplifique os radicais e efetue as operações:

a) √28 - 10√7 = (R: -8√7)
b) 9√2 + 3√50 = (R: 24√2)
c) 6√3 + √75 = (R: 11√3)
d) 2√50 + 6√2 = (R: 16√2)
e) √98 + 5√18 = (R: 22√2)
f) 3√98 - 2√50 = (R: 11√2)
g) 3√8 - 7√50 = (R: -29√2)
h) 2√32 - 5√18 = (R: -7√2)

3) Simplifique os radicais e efetue as operações:

a) √75 - 2√12 + √27 = (R: 4√3)
b) √12 - 9√3 + √75 = (R: -2√3)
c) √98 - √18 - 5√32 = (R: -16√2)
d) 5√180 + √245 - 17√5 = (R: 20√5)



MULTIPLICAÇÃO E DIVISÃO

1º Caso: Os radicais têm o mesmo índice
Efetuamos a operação entre os radicandos

Exemplos:

a) √5 . √7 = √35
b) 4√2 . 5√3 = 20√6
c) ⁴√10 : ⁴√2 = ⁴√5
d) 15√6 : 3√2 = 5√3

2º Caso: Os radicais não têm o mesmo índice
Inicialmente devemos reduzi-los ao mesmo índice

Exemplos

a) ³√2 . √5 = ⁶√2² . ⁶√5³ = ⁶√4 . ⁶√125 = ⁶√500


b)⁵√7 : √3 = ¹⁰√7² : ¹⁰√3⁵ = ¹⁰√49/243


EXERCÍCIOS

1) Efetue as multiplicações e divisões:

a) √2 . √7 = (R: √14)
b) ³√5 . ³√10 = (R: ³√50)
c) ⁴√6 . ⁴√2 = (R: ⁴√12)
d) √15 . √2 = (R: √30)
e) ³√7 . ³√4 = (R: ³√28)
f) √15 : √3 = (R: √5)
g) ³√20 : ³√2 = (R: ³√10)
h) ⁴√15 : ⁴√5 = (R: ⁴√3)
i) √40 : √8 = (R: √5)
j) ³√30 : ³√10 = (R: ³√3)

2) Multiplique os radicais e simplifique o produto obtido:

a) √2 . √18 = (R: 6)
b) √32 . √2 = (R: 8)
c) ⁵√8 . ⁵√4 = (R: 2)
d) ³√49 . ³√7 = (R: 7)
e) ³√4 . ³√2 = (R: 2)
f) √3 . √12 = (R: 6)
g) √3 . √75 = (R: 15)
h) √2 . √3 . √6 = (R: 6)

3) Efetue as multiplicações e divisões:

a) 2√3 . 5√7 = (R: 10√21)
b) 3√7 . 2√5 = (R: 6√35)
c) 2. ³√3 . 3. ³√3 = (R: 6. ³√15)
d) 5.√3 . √7 = (R: 5√21)
e) 12. ⁴√25 : 2. ⁴√5 = (R: 6. ⁴√5)
f) 18. ³√14 : 6. ³√7 = (R: 3. ³√2)
g) 10.√8 : 2√2 = (R: 5√4)

Números Naturais

ADIÇÃO, SUBTRAÇÃO, MULTIPLICAÇÃO E DIVISÃO

A CRIAÇÃO DOS NÚMEROS

Os números foram inventados pelos homens. Mas sua criação não aconteceu de repente surgiu da necessidade de contar coisas. O homem primitivo, por exemplo, contava traçando riscos na madeira ou no osso, ou ainda, fazendo nós em uma corda. Como era difícil contar quantidades grandes e efetuar cálculos com pedras, nós ou riscos simples, a necessidade de efetuar cálculos com maior rapidez levou o homem a criar símbolos, para representar quantidade. Na antiguidade, nem todos os povos usavam os mesmos símbolos. Vamos conhecer como alguns povos dessa época contavam.

A NUNERAÇÃO DOS ROMANOS

Os romanos representavam quantidades usando as próprias letras de seu alfabeto:

I - valia uma unidade
V - valia cinco unidades
X - representava dez unidades
L - indicava cinqüenta unidades
C - valia cem unidades
D - representava quinhentas unidades
M - indicava mil unidades

As quantidades eram representadas colocando-se os símbolos uns ao lado dos outros, conforme a seguinte regra:

- Os símbolos iguais juntos, até três , significava soma de valores:

II = 1 + 1 = 2

XXX = 10 + 10 + 10 = 30

CCC = 100 + 100 + 100 = 300

- Dois símbolos diferentes juntos, com o número menor aparecendo antes do maior, significava subtração de valores:

IV = 5 - 1 = 4

XL = 50 - 10 = 40

XC = 100 - 10 = 90

- Dois símbolos diferentes juntos, com o maior aparecendo antes do menor, significa soma de valores:

LX = 50 + 10 = 60

CCXXX = 200 + 30 = 230

DC = 500 + 100 = 600

MMMD = 3000 + 500 = 3500

- Para indicar quantidades a partir de 4000, os romanos usavam um traço horizontal sobre as letras correspondentes à quantidade de milhares:
__
IV = 4000
_
V = 5000
_
VCCCXX = 5320
_____
XXIII = 23000

obs: Os Romanos não conheciam um símbolo para representar o número zero


A NÚMERAÇÃO DOS HINDUS


Foram os hindus que inventaram os símbolos que usamos até hoje :
0,1,2,3,4,5,6,7,8 e 9

Esses símbolos, divulgados pelos árabes, são conhecidos como algarismos indo-arábicos e com eles escrevemos todos os números.

Mais adiante vamos falar sobre o sistema de numeração que usamos. Você sabe, por exemplo, que 51 e 15 representam quantidades bem diferentes.



NÚMEROS NATURAIS



Quando contamos uma quantidade de qualquer coisa (objetos animais, estrelas pessoas etc ) empregamos os números 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,..........

Esses números são chamados de números naturais. Existem infinitos números naturais os números que aparecem juntos, como na seqüência acima são chamados números consecutivos.

Por exemplo 12 e 13 são consecutivos 13 é o sucessor (vem depois ) e 12 é o antecessor (vem antes) de 13

Observações:

1) todo número natural tem um sucessor (é o que vem depois)
2) todo número natural tem um antecessor (é o que vem antes), com exceção do zero
3) Um número natural e o seu sucessor são chamados números consecutivos.

PAR OU IMPAR

Um número natural é par quando termina em 0,2,4,6 ou 8
Os números pares são: 0,2,4,6,8,10,12,14,16......
Um número é ímpar quando termina em 1,3,5,7, ou 9.
Os números ímpares são: 1,3,5,7,9,11,13,15.......



EXERCICIOS

1) Determine

a) O sucessor de 199
R: 200
b) o sucessor de 7.777
R : 7.778
c) o sucessor de 1.005.000
R: 1.005.001
d) o sucessor de 7.777.779
R: 7.777.780
e) o sucessor de 4.060.999
R: 4.061.000
f) o antecessor de 399
R: 398
g) o antecessor de 6.666
R: 6.665
h) o antecessor de 50.000
R: 49.999
i) o antecessor de 6.084.000
R: 6.083.999
j) o antecessor de 1.000.000
R: 999.999

2) Adicione

a) 137 com o seu sucessor
R: 137 + 138 = 275
b) 298 com o seus antecessor
R: 297 + 298 = 595

3) Pense em todos os números naturais que se escreve com dois algarismos

a) Quantos são pares?
R: 45

b) Quantos são ímpares?
R: 45



ADIÇÃO

juntando, quanto dá?

A professora de língua Portuguesa indicou aos alunos de 5° série os livros que eles deverão ler no primeiro bimestre do ano letivo, o primeiro tem 64 páginas e o segundo têm 72 páginas. Nesses dois livros, quantas páginas, ao todo, os alunos vão ler?
Devemos contar as 72 páginas de um livro mais as 64 páginas do outro. Partindo de 72 e contando mais 64 vemos chegar ao resultado. Essa contagem é demorada, não é? Por isso, você aprendeu a fazer esta conta:

72 + 64 = 136
ou
   72
+ 64
----
136

Adicionar significa somar, juntar , ajuntar, acrescentar. No exemplo acima, os números 72 e 64 são parcelas da adição. O resultado, 136, é chamado soma. Veja outro exemplo:

600 + 280= 880—soma
parcelas

Vamos somar os números 272 e 339 em duas ordens diferentes calcule e compare os resultados

a) 272 + 339
b) 339 + 272

Na matemática, a operação da adição é usada quando devemos juntar duas ou mais quantidades. Consideremos, então, as seguintes situações em que vamos empregar a operação de adição


1º EXEMPLO

Uma empresa tem 1748 pessoas trabalhando na sua fábrica e 566 pessoas trabalhando no seu escritório. Quantas pessoas trabalham, ao todo, nessa empresa?
Resolução
Para resolver esse problema, devemos fazer 1748 + 566, ou seja

1748---parcela
+566---parcela
----
2314---soma ou total (resultado da operação)
logo, podemos dizer que nessa empresa trabalham 2314 pessoas

2º EXEMPLO

Em uma escola, o início das aulas é às 7h 30min. Como cada aula tem 50 minutos de duração, a que horas termina a primeira aula?

Resolução
Para resolver esse problema, devemos fazer 7h 30min + 50 min, ou seja

7h 30 min----parcela
+ 50 min----parcela
---------
7h 80 min----soma ou total

Como 1 hora tem 60 minutos, então 80 minutos correspondem a 1h 20 min. Então 7h 80 min = 7 h + 1h 20 min = 8 h 20 min
logo, podemos dizer que a primeira aula termina às 8 h 20 min

3º EXEMPLO

Durante o ano de 2008, uma equipe de futebol venceu 49 partidas, empatou 18 partidas e perdeu 5 partidas. Quantas partidas essa equipe disputou durante o ano de 2008?

Resolução
Para resolver o Problema, devemos calcular 49 + 18 + 5, ou seja :

49---parcelas
18---parcelas
+5---parcelas
--
72---soma ou total
Logo, podemos dizer que essa equipe disputou 72 partidas

EXERCÍCIOS

1) Calcule as somas

a) 10 + 11 = 21
b) 10 + 21 = 31
c) 10 + 31 = 41
d) 10 + 41 = 51
e) 10 + 51 = 61
f) 10 + 61 = 71
g) 10 + 71 = 81
h) 10 + 81 = 91
i) 10 + 91 = 101
j) 12 + 66 = 78
l) 13 + 48 = 61
m) 67 + 89 = 156
n) 97 + 89 = 186
o) 56 + 87 = 143
p) 84 + 77 = 161
q) 38 + 98 = 136
r) 69 + 73 = 142
s) 83 + 99 = 182
t) 73 + 37 = 110
u) 75 + 23 = 98
v) 37 + 67 = 104
x) 88 + 88 = 176
z) 99 + 99 = 198

2) calcule as somas

a) 110 + 100 = 210
b) 120 + 101 = 221
c) 130 + 111 = 241
d) 140 + 121 = 261
e) 150 + 131 = 281
f) 170 + 132 = 302
g) 180 + 134 = 314
h) 190 + 135 = 325
i) 200 + 136 = 336
j) 201 + 137 = 338
l) 210 + 138 = 348
m) 220 + 139 = 359
n) 230 + 140 = 370
o) 240 + 150 = 390
p) 250 + 160 = 410
q) 260 + 170 = 430
r) 270 + 180 = 450
s) 280 + 190 = 470
t) 290 + 200 = 490
u) 311 + 212 = 523
v) 548 + 645 = 1193
x) 665 + 912 = 1577
z) 987 + 789 = 1776

3) Efetue as adições

a) 1487 + 2365 = 3852
b) 6547 + 5478 = 12025
c) 4589 + 4587 = 9176
d) 3258 + 9632 = 12890
e) 7896 + 5697 = 13593
f) 5423 + 8912 = 14335
g) 7463 + 9641 = 17104
h) 2536 + 5847 = 8383
i) 7788 + 9988 = 17776
J) 1122 + 4477 = 5599
l) 7946 + 3146 = 11092
m) 4562 + 3215 = 7777
n) 1478 + 8632 = 10110
o) 8437 + 2791 = 11228
p) 2491 + 8461 = 10952
q) 6258 + 6412 = 12670
r) 5353 + 7887 = 13240
s) 3226 + 9558 = 12784
t) 1112 + 9994 = 11106
u) 6537 + 4538 = 11075
v) 2197 + 8617 = 10814
x) 1002 + 9913 = 10915
z) 9999 + 8888 = 18887

4) Efetue as adições

a) 296 + 1634 + 98 = 2028
b) 109 + 432 + 7482 = 8023
c) 48 + 16409 + 287 = 16744
d) 31 + 1487 + 641 + 109 = 2268
e) 3412 + 1246 = 4658

5) Determine a soma do número 273 com o seu sucessor
R: 547

6) Um objeto custa R$ 415.720,00. O comprador terá ainda R$ 28.912,00 de despesa de frete. Quanto o comprador vai pagar?
R: 444632

7) Ao receber o meu salário paguei R$ 437,12 de aluguel, R$ 68,14 de impostos. R$ 1.089,67 de gastos com alimentação e ainda me sobraram R$ 749,18. Quanto recebi de salário?
R: 2344,11

8) Um menino estuda 2 horas e 45 minutos pela manhã e 4 horas e 30 minutos à tarde. Quantos minutos estuda diariamente?
R: 435 min

9) Um automóvel passou pelo quilômetro 435 de uma rodovia. Ele ainda deverá percorrer 298 quilômetros até chegar ao seu destino. Quantos quilômetros da estrada vai percorrer para chegar ao destino?
R: 733

10) Em 1990 o Brasil vendeu para o exterior 283.356 veículos e, em 1991, essa venda foi de 345.760 veículos. Quantos veículos o Brasil vendeu para o exterior nesses dois anos?
R: 629.116

11) Uma empresa tem sede em São Paulo e filiais em outros estados. Na sede trabalham 316 pessoas e nas filiais 1098 pessoas. Quantas pessoas trabalham nessa empresa?
R: 1.414

12) Em um condomínio, há 675 lotes já vendidos e 1095 lotes para vender. Quantos lotes de terreno há nesse condomínio?
R: 1770

13) Uma escola funciona em dois turnos. No turno matutino há 1407 alunos e no turno vespertino há 1825 alunos. Quantos alunos estudam nessa escola?
R: 3232

14) Uma empresa produziu no primeiro trimestre 6905 peças. no segundo trimestre, a mesma empresa produziu 795 peças a mais que no primeiro trimestre. Nessas condições:

a) Quantas peças a empresa produziu no segundo trimestre?
R: 7700

b) Quantas peças a empresa produziu no semestre?
R: 14605

15) Nei comprou um aparelho de som por 635 reais e as caixas de som por 128 reais. Tendo pago 12 reais pela instalação, qual a quantia que ele gastou ?
R: 775

16) De acordo com o censo realizado em 1991, o estado da Paraíba tem 1.546.042 homens e 1.654.578 mulheres. Qual é a população da Paraíba segundo esse censo?
R: 3.200.620

17) Calcule:

a) 1705 + 395 = 2100
b) 11.048 + 9.881 = 20929
c) 4.907 + 62.103 = 67010
d) 275.103 + 94.924 = 370027
e) 545 + 2.298 + 99 = 2.942
f) 7.502 + 209.169 + 38.425 = 255.096



PROPRIEDADES DA ADIÇÃO DE NÚMEROS NATURAIS

Vamos observar a seguinte situações:

1º) consideremos os números naturais 40 e 24 e vamos determinar a sua soma ?
 40 + 24 = 64

trocando a ordem dos números, vamos determinar a sua soma
24 + 40 = 64

De acordo com as situações apresentadas, podemos escrever
40 + 24 = 24 + 40

Esse fato sempre vai ocorrer quando consideremos dois números naturais Daí concluímos
Numa adição de dois números naturais, a ordem das parcelas não altera a soma. Essa propriedade é chamada PROPRIEDADE COMUTATIVA DA ADIÇÃO

2º) Consideremos os números naturais 16,20 e 35 e vamos determinar a sua soma:

16 + 20 + 35
=36 + 35
=71

16 + 20 + 35
= 16 + 55=
=71

De acordo com as situações apresentadas, temos
(16 + 20) + 35 = 16 + (20 + 35)

Esse fato se repete quando consideramos três números naturais quaisquer Então: Numa adição de três ou mais números naturais quaisquer, podemos associar as parcelas de modo diferentes. Essa propriedade é chamada PROPRIEDADE ASSOCIATIVA DA ADIÇÃO

3º) Consideremos os números naturais 15 e 0 e vamos determinar a sua soma, independentemente da ordem dos números:

15 + 0 = 15
0 + 15 = 15

Você nota que o número o não influi no resultado da adição.
Então Numa adição de um número natural com zero a soma é sempre igual a esse número natural.
Nessas condições, o numero zero é chamado ELEMENTO NEUTRO DA ADIÇÃO.



SUBTRAÇÃO



Na matemática, a operação da subtração é empregada quando devemos tirar uma quantidade de outra quantidade.

veja o exemplo

O estádio do Pacaembu, na cidade de São Paulo, tem capacidade para 40.000 pessoas. È também na cidade de São Paulo que se encontra o estádio do Morumbi que tem capacidade para 138.000 pessoas.
Para se ter uma idéia do tamanho do Morumbi, se colocarmos nele 40.000 ainda sobrarão muitos lugares. Quanto sobrarão?

Dos 138.000 lugares devemos tirar os 40.000 assim
138.000 - 40.000 = 98.000

sobrarão 98.000 lugares.
Subtrair significa tirar,diminuir.

Na subtração anterior, o número 138.000 é chamado minuendo e 40.000 é o subtraendo, o resultado, 98.000, é chamado diferença ou resto.

EXERCÍCIOS

1) calcule as subtrações

a) 47 - 31= (R: 16)
b) 58 - 45= (R: 13)
c) 65 - 57= (R : 8)
d) 89 - 65= ( R: 24)
e) 97 - 21= (R: 76)
f) 78 - 34= (R: 44)
g) 56 - 31= (R: 25)
h) 87 - 78= (R: 9 )
i) 98 - 78= (R: 20)
j) 48 - 29= (R: 19)
l) 38 - 29= ( R: 9)
m) 68 - 59= (R: 9 )
n) 56 - 37= (R: 19)
o) 23 - 19= (R: 4)
p) 99 - 81= (R: 18)
q) 21 - 19= (R: 2)
r) 23 - 22= (R: 1)
s) 18 - 14= (R: 4)
t) 74 - 49= (R: 25)
u) 74 - 37= (R: 37)
v) 74 - 52= (R: 22)
x) 74 - 63= (R: 11)
z) 96 - 13= (R: 83)

2) Calcule as Subtrações

a) 72224-6458= (R: 65766)
b) 701-638= (R: 63)
c) 131003-88043= (R: 42960)
d) 1138-909= (R: 229)
e) 80469-6458 = (R: 74011)
f) 866 - 638 = (R: 228)
g) 131012-88142= (R: 42870)
h)2238 - 909 = (R: 1329)
i) 802-638 = (R: 164)

3)Dom Pedro II, imperador do Brasil, faleceu em 1891 com 66 anos de idade. Em que ano ele nasceu?
R: 1825

4) Um avião Boeing 747 pode transportar 370 passageiros e um avião DC-10 pode transportar 285 passageiros. Quantos passageiros o Boeing 747 pode transportar a mais que o DC10?
 (R: 85 passageiros)

5) À vista um automóvel custa 26.454 reais. À prazo o mesmo automóvel custa 38.392 reais. A diferença entre o preço cobrado é chamado de juros. Qual é a quantia que pagará de juros?
(R: 11.938)

6) Um avião pode transportar 295 passageiros. Em determinado vôo, o avião está transportando 209 passageiros. Quantas poltronas desse avião não estão ocupadas?
(R: 86 )

7) Se Antonio tem 518 selos e Pedro tem 702 selos, Quantos selos Pedro tem a mais que Antonio?
(R: 184 )

8) Ézio tem 95 reais e quer comprar uma máquina fotográfica que custa 130 reais. Quantos reais faltam para ele comprar a máquina?
(R: 35)

9)De acordo com o Censo de 1980, a população de uma cidade era de 79.412 habitantes. Feito o Censo em 1991, verificou-se que a população dessa cidade passou a ser de 94.070 habitantes. Qual foi o aumento da população dessa cidade nesse período de tempo?
(R: 14.658)

10)Uma industria, no final de 1991, tinha 10.635 empregados. No inicio de 1992 em virtude da crise econômica dispensou 1.880 funcionários. Com quantos funcionários a indústria ficou?
(R: 8.755)

11) Qual a diferença entre 10.000 e 5.995?
(R: 4005 )

12) Quantas unidades faltam a 499 para atingir 1 unidade de milhar?
(R: 501)

13) Efetue:

a) 2620 - 945 = (R: 1.675)
b) 7000 - 1096 = (R: 5904)
c) 11011 - 7997 = (R: 3014)
d) 140926 - 78016 = ( R: 62910)

14) Considere os números 645 e 335. Nessas condições:

a) Determine a diferença entre eles
R: 310

b) Adicione 5 unidades ao primeiro número e 5 unidades ao segundo número e calcule a diferença entre os novos números que você obteve.
R: 650,340, 310


MULTIPLICAÇÃO


A multiplicação é uma adição de parcelas iguais.
veja
3+3+3+3 = 12

Podemos representar a mesma igualdade por
4 x 3 = 12 ou 4 . 3 = 12

Essa operação chama-se multiplicação e é indicada pelo sinal . ou x

Na multiplicação 4 x 3 = 12
dizemos que;

4 e 3 são os fatores
12 é o produto


1º exemplo

Um edifício de apartamentos tem 6 andares. Em cada andar a 4 apartamentos. Quantos apartamentos tem o edifício todo?

Resolução

Para resolver esse problema, podemos fazer
4 + 4 + 4 + 4 + 4 + 4 = 24

Essa mesma igualdade pode ser representada por:
6 x 4 = 24
Logo podemos dizer que o edifício tem 24 apartamentos

2° Exemplo

A fase final do torneio de voleibol da liga nacional é disputado por 4 equipes. Cada equipe pode inscrever 12 jogadores. Quantos jogadores serão inscritos para disputar a fase final desse torneio?

resolução

Para resolver esse problema podemos fazer
12 + 12 + 12 + 12 = 48

Essa mesma igualdade pode ser representada por:
4 x 12 = 48

EXERCÍCIOS

1) Calcule as multiplicações

a) 5 x 5 = 25
b) 5 x 15 = 75
c) 5 x 115 = 575
d) 5 x 25 = 125
e) 5 X 125 = 625
f) 5 x 55 = 275
g) 5 x 75 = 375
h) 5 x 375 = 1875
i) 5 x 1257 = 6285
j) 6 x 5 = 30
l) 6 x 15 = 90
m) 6 x 115 = 690
n) 6 x 25 = 150
o) 6 x 125 = 750
p) 6 x 55 = 330
q) 6 x 75 = 450
r) 6 x 375 = 2250
s) 6 x 1257 = 7542
t) 7 x 5 = 35
u) 7 x 15 = 105
v) 7 x 115 = 805
x) 7 x 25 = 175
z) 7 x 125 = 875
w) 7 x 55 = 385

2) Calcule as multiplicações

a) 7 x 75 = 525
b) 7 x 375 = 2625
c) 7 x 1257 = 8799
d) 8 x 5 = 40
e) 8 x 15 = 120
f) 8 x 115 = 920
g) 8 x 25 = 200
h) 8 x 125 = 1000
i) 8 x 55 = 440
j) 8 x 75 = 600
l) 8 x 375 = 3000
m) 8 x 1257 = 10056
n) 9 x 5 = 45
o) 9 x 15 = 135
p) 9 x 115 = 1035
q) 9 x 25 = 225
r) 9 x 125 = 1125
s) 9 x 55 = 495
t) 9 x 75 = 675
u) 9 x 375 = 3375
v) 9 x 1257 = 11313
x) 9 x 999 = 8991
z) 9 x 123 = 1107

3) Efetue as Multiplicações

a) 153 x 7 = 1071
b) 1007 x 9 = 9063
c) 509 x 62 = 31558
d) 758 x 46 = 34868
e) 445 x 93 = 41385
f) 289 x 140 = 40460
g) 1782 x 240 = 427680
h) 2008 x 405 = 813240
i) 2453 x 1002 = 2457906

4) Efetue as multiplicações

a) 28 x 0 = 0
b) 49 x 10 = 490
c) 274 x 10 = 2740
d) 158 x 100 = 15800
e) 164 x 1000 = 164000
f) 89 x 10000 = 890000

5) Considerando 1 mês = 30 dias e 1 ano = 365 dias, uma semana = 7 dias, determine:

a) quantos dias há em 15 semanas completas.
(R: 105 dias)

b) Quantos dias há em 72 meses completos.
(R: 2160 dias)

c) Quantos dias há em 8 anos completos.
(R: 2920 dias)

6) Para uma demonstração de ginástica, um professor de Educação Fisíca prepara 64 grupos de alunos. Cada grupo é formado por 25 alunos. Quantos alunos devem participar dessa demonstração?
R: 1600

7) Com 12 prestações mensais iguais de 325 reais posso comprar uma moto. Quanto vou pagar por essa moto?
R: 3900 reais

8) Qual é o número natural que você vai obter quando multiplicar 736 por 208?
R: 153.088

9) Para cobrir o piso de um barracão foram colocados 352 placas de 35 metros quadrados cada uma. Quantos metros quadrados tem o piso desse barracão?
R: 12320 metros quadrados

10) Um carro bem regulado percorre 12 quilômetros com um litro de gasolina. Se numa viagem foram consumidos 46 litro, qual a distância em quilômetros que o carro percorreu?
R: 552 quilômetros

11) Em um teatro há 18 fileiras de poltronas. Em cada fileira foram colocadas 26 poltronas. Quantas poltronas há nesse teatro?
R: 468 poltronas
.
12) Em uma multiplicação, os fatores são 134 e 296. Qual o produto?
R: 39.664

13) Numa mercearia há 7 caixas de bombons e cada caixa contém 3 dúzias de bombons. Quantos bombons há na mercearia?
R: 252

14) Uma pessoa deu R$ 4.700,00 de entrada na compra de um objeto e pagou mais 6 prestações de R$ 2.300,00. Quanto custou o objeto?
R: 18.500

15) Um motorista percorreu 749 km em 6 dias. Nos cinco primeiros dias andou 132 km por dia. Quanto percorreu no 6º dia ?
R: 89

16) Calcule:

a) 19x6= 114
b) 46x12= 552
c) 321x11= 3531
d) 329x25= 8225
e) 1246x24= 29904
f) 67632x101= 6830832

17) Calcule as contas:

a) 18x5x2= 180
b) 5x2x24= 240
c) 2x5x44= 440
d) 37x2x5= 370
e) 12x4x5= 240
f) 4x5x15= 300

PROPRIEDADES ESTRUTURAIS DA MULTIPLICAÇÃO


1) FECHAMENTO

O produto de dois números naturais é um número natural
5 x 3 = 15

2) COMUTATIVA

A ordem dos fatores não altera o produto.
2 x 7 = 14
7 x 2 = 14
assim: 2 x 7 = 7 x 2

3) ELEMENTO NEUTRO

O número 1 na multiplicação é um número neutro
5 x 1 = 5
1 x 5 = 5

4) ASSOCIATIVA

A multiplicação de três números naturais pode ser feita associando-se os dois primeiros ou os dois últimos fatores
(3 x 4 ) x 5 = 12 x 5 = 60
3 x ( 4 x 5 ) = 3 x 20 = 60


5) DISTRIBUTIVA DA MULTIPLICAÇÃO EM RELAÇÃO A ADIÇÃO

Na multiplicação de uma soma por um número natural, multiplica-se cada um dos termos por esse número .

veja:
1) 2 x (5+3) = 2 x 8 = 16

2) 2 x 5 + 2 x 3 = 10 + 6 = 16

DIVISÃO EXATA

Consideremos dois números naturais, dados numa certa ordem, 10 é o primeiro deles e 2 é o segundo .
Por meio deles determina-se um terceiro número natural que, multiplicado pelo segundo dá como resultado o primeiro. Essa operação chama-se divisão e é indicada pelo sinal :
Assim,
10:2 = 5 porque 5x2 = 10
Na divisão 10:2=5, dizemos que:
10 é o dividendo
2 é o divisor
5 é o resultado ou quociente

EXEMPLO

Um colégio levou 72 alunos numa excursão ao jardim zoológico e para isso repartiu igualmente os alunos em 4 ônibus. Quantos alunos o colégio colocou em cada ônibus?
Para resolver esse problema, devemos fazer uma divisão 72 : 4 = 18 , sendo assim cada ônibus tinha 18 alunos.

EXERCÍCIOS

1) Calcule as divisões

a) 20:5= 4
b) 16:8= 2
c) 12:1= 12
d) 48:8= 6
e) 37:37= 1
f) 56:14= 4

2) Observe a igualdade 56:7=8 e responda:

a) Qual é o nome da operação?
R: divisão

b)Como se chama o número 56?
R: dividendo

c)Como se chama o número 7?
R: divisor

d)como se chama o número 8?
R: Quociente ou resultado

3)Efetue as divisões

a) 492:4= 123
b) 891:9= 99
c) 4416:6= 736
d) 2397:17= 141
e) 1584:99= 16
f) 1442:14= 103
g) 21000:15= 1400
h) 7650:102= 75
i) 11376:237= 48


4) Responda

a)Qual é a metade de 784?
R: 392

b)Qual é a terça parte de 144?
R: 48

c)Qual é a quinta parte de 1800?
R: 360

d)Qual é a décima parte de 3500?
R: 350

5)Em um teatro há 126 poltronas distribuídas igualmente em 9 fileiras. Quantas poltronas foram colocadas em cada fileira?
R: 14 poltronas

6)Quantos garrafões de 5 litros são necessários para engarrafar 315 litros de vinho?
R: 63 garrafões

7)Uma pessoa ganha R$ 23,00 por hora de trabalho. Quanto tempo deverá trabalhar para receber R$ 391,00?
R: 17 horas

8)Uma torneira despeja 75 litros de água por hora. Quanto tempo levará para encher uma caixa de 3150 litros ?
(R: 42 horas)

9) Numa pista de atletismo uma volta tem 400 metros. Numa corrida de 10.000 metros, quantas voltas o atleta tem de dar nessa pista?
( R: 25 voltas)

10) Um livro tem 216 páginas. Quero terminar a leitura desse livro em 18 dias, lendo o mesmo número de páginas todos os dias. Quantas páginas preciso ler por dia?
R: 12 paginas

11)Quantos grupos de 18 alunos podem ser formados com 666 alunos?
R: 37 grupos

12)Uma tonelada de cana de açúcar produz aproximadamente 85 litros de álcool. Quantas toneladas de cana são necessárias para produzir 6970 litros de álcool?
R: 82 toneladas

DIVISÃO NÃO EXATA

Nem sempre é possível realizar a divisão exata em N
considerando este exemplo
7 : 2 = 3 sobra 1 que chamamos de resto
Numa divisão, o resto é sempre menor que o divisor

Exemplo

Uma industria produziu 183 peças e quer colocá-las em 12 caixas, de modo que todas as caixas tenham o mesmo número de peças. Quantas peças serão colocadas em cada caixa?

resolução
Para resolver esse problema devemos fazer 183 : 12, tendo como resultado 15 e resto 3.
Como o resto é 3, dizemos que esta é uma divisão com resto ou uma divisão não exata.
Logo na caixa serão colocadas 15 peças, sobrando ainda 3 peças.

EXERCÍCIOS

1) Determine o quociente e o resto das seguintes divisões:

a) 79:8= ( R: 9 resto=7)
b) 49:8= (R: 6 resto=1)
c) 57:8= (R: 7 resto=1)
d) 181:15= (R: 12 resto=1)
e) 3214:10= (R: 321 resto=4)
f) 825:18= (R: 45 resto=15)
g) 4937:32= (R: 154 resto=9)
h) 7902:12= (R: 658 resto=6)
i) 1545:114= (R: 13 resto=63)

12/04/2020

Equação do 2º grau

DEFINIÇÃO

Uma equação do 2º grau com uma variável tem a forma:

ax² + bx + c = 0

onde os números reais a, b e c são os coeficientes da equação, sendo que deve ser diferente de zero. Essa equação é também chamada de equação quadrática, pois o termo de maior grau está elevado ao quadrado

x é a incógnita

a,b, e c números reais, chamados de coeficientes


Equação Completa do segundo grau



Uma equação do segundo grau é completa, se todos os coeficientes a, b e c são diferentes de zero.

Exemplos:

1) 2 x² + 7x + 5 = 0, onde = 2, = 7 e = 5

2) 3 x² + x + 2 = 0, onde a = 3 , b = 1 e c = 2

3)  x² -7 x + 10 = 0, onde = 1, = -7 e = 10

4) 5x² - x -3 = 0, onde = 5, = -1 e = -3



Resolução de equações completas do 2° grau

Como vimos, uma equação do tipo: ax² + bx + c= 0, é uma equação completa do segundo grau e para resolvê-la basta usar a fórmula quadrática (atribuída a Bhaskara), que pode ser escrita na forma:

Δ = b²- 4ac é o discriminante da equação.
Para esse discriminante Δ, há três possíveis situações:

1) Δ > 0 , a equação te duas raízes reais e diferentes.

2)  Δ = 0, a equação tem uma raiz

3)  Δ < 0 , a equação não tem raízes reais

Mostraremos agora como usar a fórmula de Bhaskara para resolver a equação:

x² - 5 x + 6 = 0

1) Identificar os coeficientes: a = 1, b = -5, c = 6

2) Escrever o discriminante Δ = b²-4ac.

3) Calcular Δ = (-5)² -4×1×6 = 25-24 = 1

4) Escrever a fórmula de Bhaskara:













EXEMPLOS






























































EXERCÍCIOS

1. Calcular o discriminante de cada equação e analisar as raízes em cada caso:

a) x² + 9 x + 8 = 0 (R:-1 e -8)
b) 9 x² - 24 x + 16 = 0 (R:4/3)
c) x² - 2 x + 4 = 0 (vazio)
d) 3 x² - 15 x + 12 = 0 (R: 1 e 4)
e) 10 x² + 72 x - 64 = 0 (R:-8 e 4/5)
e) 5x² - 3x - 2 = 0 (R: 1 e -2/5)
f) x² - 10x + 25 = 0 (R: 5)
g) x² - x - 20 = 0 (R: 5 e -4)
h) x² - 3x -4 = 0 (R: 4 e -1)
i) x² - 8x + 7 = 0 (R: 7 e 1)



RESOLVA AS EQUAÇÕES DE 2º GRAU


1) x² - 5x + 6 = 0 _____(R:2,3)
2) x² - 8x + 12 = 0 ______(R:2,6)
3) x² + 2x - 8 = 0______ (R:2,-4)
4) x² - 5x + 8 = 0 ______(R:vazio)
5) 2x² - 8x + 8 = 0_______ (R:2,)
6) x² - 4x - 5 = 0_______ (R:-1, 5)
7) -x² + x + 12 = 0_______ (R:-3, 4)
8) -x² + 6x - 5 = 0_______ (R:1,5)
9) 6x² + x - 1 = 0______ (R:1/3 , -1/2)
10) 3x² - 7x + 2 = 0 ______(R:2, 1/3)
11) 2x² - 7x = 15 _______(R:5, -3/2)
12) 4x² + 9 = 12x______ (R:3/2)
13) x² = x + 12 ______(R:-3 , 4)
14) 2x² = -12x - 18 _____(R:-3 )
15) x² + 9 = 4x_____ (R: vazio)
16) 25x² = 20x – 4 ____(R: 2/5)
17) 2x = 15 – x² ______(R: 3 , -5)
18) x² + 3x – 6 = -8____ (R:-1 , -2)
19) x² + x – 7 = 5 ____(R: -4 , 3)
20) 4x² - x + 1 = x + 3x² ___(R: 1)
21) 3x² + 5x = -x – 9 + 2x²____ (R: -3)
22) 4 + x ( x - 4) = x _____(R: 1,4)
23) x ( x + 3) – 40 = 0 _____(R: 5, -8)
24) x² + 5x + 6 = 0 _____(R:-2,-3)
25) x² - 7x + 12 = 0 _____(R:3,4)
26) x² + 5x + 4 = 0 _____(R:-1,-4)
27) 7x² + x + 2 = 0 _____(vazio)
28) x² - 18x + 45 = 0 _____(R:3,15)
29) -x² - x + 30 = 0 _____(R:-6,5)
30) x² - 6x + 9 = 0 _____(R:3)
31) ( x + 3)² = 1_______(R:-2,-4)
32) ( x - 5)² = 1_______(R:6,4)
33)( 2x - 4)² = 0_______(R:2)
34) ( x - 3)² = -2x²_______(R:vazio)

35)Na equação 3x² - 12 = 0 as soluções são:
a)0 e 1
b)-1 e 1
c)-2 e 2 (x)
d)-3 e 3
e)0 e 4

36) x² + 3x - 28 = 0 (R: -7,4)
37) 3x² - 4x + 2 = 0 (R: vazio)
38) x² - 3 = 4x + 2 (R: -1,5)

RACIOCÍNIO LÓGICO

  RACIOCÍNIO LÓGICO Lógica matemática Questão 1 Um pedreiro diz: "Se eu tivesse dois tijolos a mais, o dobro deste número seria 100...