20/02/2017

Operação com Monômios

Operação com Monômios

O que são monômios ?
Resultado de imagem para monomios

Um monômio é uma expressão algébrica racional inteira que representa um produto de números reais.
- Um monômio distinguimos em duas partes:

1) Um parte numérica (constante) que também é chamada de coeficiente .

2) Uma parte literal (variável)

Resultado de imagem para grau de monomios

Exercício:
De o grau de cada um dos seguintes monômios:

a) 5x² = 
b) 4x⁵y³ =  
c) -2xy² =  
d) a³b² = 
e) 7xy =  
f) -5y³m⁴= 
g) 6abc =  
h) 9x³y²z⁵ =

Resultado de imagem para monomios

Observe que:
5x²y³ e 5x³y² não são semelhantes
-3x²y³ e 4y³x² são semelhante


Adição e subtração

Resultado de imagem para monomios adição e subtração
Eliminam-se os parênteses e reduzem-se os termos semelhantes.
Exemplos 1

(+8x) + (-5x)
8x – 5x
3x

Exemplo 2

(-7x ) – ( +x)
-7x – x
-8x



EXERCÍCIOS


1) Efetue:

a) (+7x) + (-3x) = (R: 4x)
b) (-8x) + (+11x) = (R: 3x )
c) (-2y) + (-3y) = (R: -5y)
d) (-2m) + (-m) = (R: -3m)
e) (+5a²) + (-3a²) = (R: 2a²)
f) (+5x) + (-5x) = (R: 0)
g) (+6x) + (-4x) = (R: 2x)
h) (-6n) + (+n) = (R: -4n)
i) (+8x) – ( -3x) = (R: 11x)
j) (-5x) – (-11x) = (R: 6x)
k) (-6y) – (-y) = (R: -5y)
l) (+7y) – (+7y) = (R: 0 )
m) (-3x) – (+4x) = (R -7x)
n) (-6x) – ( -x) = (R: -5x)
o) (+2y) – (+5y) = (R: -3y )
p) (-m) –(-m) = (R: 0 )

2) Efetue :

a) (+ 3xy) – (-xy) + (xy) = (R: 5xy)
b) (+ 15x) – (-3x) – (+7x) + (-2x) = (R: 9x )
c) (-9y) –( +3y) – (+y) + (-2y) = (R: -15y)
d) (3n) + (-8n) + (+4n) – (-5n) – (-n) = (R: 5n)

3) Efetue:

a) (+1/2x) + (-1/3x) = (R: 1x/6)
b) ( -2/5x) + (-2/3x) = (R: -16x/15)
c) (-7/2y) + (+1/4y) = (R: -13y/4)
d) (+2m) +( -3/4m) = (R: 5m/4)
e) (+2/3x) - ( -3/2x) = (R: 13x/6)
f) (-3/4y) – (+1/2y) = (R: -5y/4)
g) (+2/5m) – (+2/3m) = (-4m/15)
h) (-3x) –(-2/5x) = (R: 13x/5)

4)   Calcule os monômios

a)      2x + 3x = (R: 5x)
b)      6y – 4y + 5y = (R: 7y)
c)       3a – 6a – a = (R: -4a)
d)      2/5 x²y 3/2 x²y = (R: 19/10 x²y)
e)      1/2ab – 3ab = (R: 5/2ab)
f)       7b + 4b – 6b = (R: 5b)
g)      3/2 y – 2y + 7/3 y = (R: 11/6Y)
h)      3/5 x + x = (R: 8/5x)
i)        8xy – 4xy + 4xy – 8xy = (R: 0xy)
j)        3/7 x + 41/8 x = ( R: 311/56x)
k)      -x² + 2/5 x² = (R: -3/5 x²)
l)        -3p -7p + 18p = (R: 8p)


MULTIPLICAÇÃO

O produto de dois monômios, basta multiplicarmos coeficiente com coeficiente e parte literal com parte literal. E quanto multiplicamos as partes literais devemos usar a propriedade da potencia que diz para conservar a base e somar os expoentes.
Exemplo
Vamos Calcular:

(3x²) . (2x⁵) =
( 3 . x . x) . ( 2 .x.x.x.x.x.)=
3 .2 x.x.x.x.x.x.x =
6x⁷

Conclusão: multiplicam-se os coeficientes e as partes literais

Resultado de imagem para multiplicação de monomios


EXERCÍCIOS

1) Calcule:
a) (+5x) . (-4x²) = (R: -20x³)
b) (-2x) . (+3x) = (R: -6x²)
c) (+5x) . (+4x) = (R: 20x²)
d) (-n) . (+ 6n) = (R: -6n²)
e) (-6x²) . (+3x²) = (R: -18x³)
f) (-2y) . (5y) = (R: -10y²)
g) (+4x²) . (+5x³) = (R: 20x⁵)
h) (2y) . (-7x) = (R: -14yx)
i) (-2x) . (-3y) = (R: 6xy)
j) (+3x) . (-5y) = (R: -15xy)
k) (-3xy) . (-2x) = (R: 6x²y)

 2) Calcule

a) (2xb) . (4x) = (R: 8x²b)
b) (-5x²) . (+5xy²) = ( R: -25 x³y²)
c) (-5) . (+15x²y) = (R: -75 x²y)
d) (-9X²Y) . (-5XY²) = (R: 45x³y³)
e) (+3X²Y) . (-XY) = ( R: -3x³y²)
f) (X²Y³) . (5X³Y²) = (R: 5x⁵y⁵)
g) (-3x) . (+2xy) . ( -x³) = (R: 6x⁵y)
h) (-x³) . (5yx²) . (2y³) = (R: -10x⁵y³)
i) (-xy) . (-xy) . (-xy) = (R: -x³y³)
j) (-xm) . ( x²m) . (3m) = (R: -3x³m³)

3) Calcule:
a) (1/2x) . (3/5x³) = (R: 3/10x⁴)
b) (-2/3x) . (+3/4y) = (R: -6/12xy ou -1/2xy)
c) (-1/3x²) . (4/2x³) = (R: -4/6x⁵ ou -2/3x⁵)
d) (-x²/3) . (-x/2) = (R: x³/6)
e) (-2x/3) . (6x/5) = (R: -12/15x²)
f) (-10xy) . ( xy²/3) =



DIVISÃO
A divisão de dois monômios, basta dividirmos o coeficiente com coeficiente e parte literal com parte literal. E quanto dividimos  as partes literais devemos usar a propriedade da potencia que diz para conservar a base e subtrair  os expoentes. 


Vamos calcular:

(15x⁶) : (5x²) =
15 . x . x . x. x. x. x : 3 . x . x
3 . x . x . x . x
3x⁴

Conclusão: dividem-se os coeficientes e as partes literais

Resultado de imagem para divisão de monomios


EXERCÍCIOS

1) Calcule os quocientes:

a) (15x⁶) : (3x²) = (R: 5x⁴)
b) (16x⁴) : (8x) = (R: 2 x³)
c) (-30x⁵) : (+3x³) = (R: -10)
d) (+8x⁶) : (-2x⁴) = (R: -4x²)
e) (-10y⁵) : (-2y) = (R: 5y⁴)
f) (-35x⁷) : ( +5x³) = (R: -7x⁴)
g) (+15x⁸) : (-3x²) = (R: -5x⁷)
h) (-8x) : (-8x ) = (R: 1)
i) (-14x³) : (+2x²) = (R: -7x)
j) (-10x³y) : (+5x²) = (R: -2xy)
k) (+6x²y) : (-2xy) = (R: -3x)
l) (-7abc) : (-ab) = (R: 7c)
m) (15x⁷) : ( 6x⁵) = (R:5/2x²)
n) (20a³b²) : ( 15ab²) =(R:4/3a²)
o) (+1/3x³) : (-1/5x²) = (R:-5/3x)
p) (-4/5x⁵y) : ( -4/3x³y) = (R:3/5x²)
q) (-2xy²) : ( xy/4) = (R: -8y)


2) Calcule


a)      (10xy) : (5x) = ( R: 2y)
b)      (x³y²) : (2xy) = (R: 1/2 x²y)
c)       (-3xz²) : (-3xz) = (R: z)
d)      (-14m⁶n³) : ( 7m⁴n²) = (R: -2m²n)
e)      (1/2a³b²) : (-a³b²) = (R: -1/2)
f)       (a⁴b³) : (5a³b) = (R: 1/5 ab²)
g)      (-3xy³) : (-4x²y) = (R: 3/4x³y²)
h)      (-2/3 xz) : 5/3 z = (R: -2/5 x)


POTENCIAÇÃO

Para elevarmos um monômio a uma potência devemos elevar cada fator desse monômio a essa potencia. Na pratica elevamos elevamos o coeficiente numérico à potencia e multiplicamos cada um dos expoentes das variáveis pelo expoente da potencia.


Vamos calcular:

(5a³m)² = 25 a⁶m

Conclusão : Para elevarmos um monômio a uma potência, elevamos cada um de seus fatores a essa potência.

Exemplos

1) (-7x)² = 49 x²
2) (-3x²y)³ = -27x⁶y³
3) (- 1/4x⁴)² = 1/16x⁸

4)Resultado de imagem para potenciação de monomios

EXERCÍCIOS

1) Calcule:

a) ( + 3x²)² =
b) (-8x⁴)² =
c) (2x⁵)³ =
d) (3y²)³ =
e) (-y²)⁴ =
f) (-mn)⁴ =
g) (2xy²)⁴ =
h) (-4x²b)² =
i) (-3y²)³ =
j) (-6m³)² =
k) (-3x³y⁴)⁴ =
l) (-2x²m³)³ =

2) Calcule:

a) (x²/2)³ =
b) (-x²/4)² =
c) (-1/2y)² =
d) (+2/3x)³ =
e) (-3/4m)² =
f) (-5/6m³)² =

RAIZ QUADRADA

Para extraimos a raiz de um monômio efetuamos a raiz de seu coeficiente numérico e a raiz de seus fatores. Na pratica isso equivale a dividirmos cada expoente pelo índice da raiz.


Aplicando a definição de raiz quadrada, temos:

a) √49x² = 7x, pois (7x)² = 49x²
b) √25x⁶ = 5x³, pois (5x³)² = 25x⁶

Conclusão: para extrair a raiz quadrada de um monômio, extraímos a raiz quadrada do coeficiente e dividimos o expoente de cada variável por 2

Exemplos:

a) √16x⁶ = 4x³
b) √64x⁴b² = 8x²b

Obs: Estamos admitindo que os resultados obtidos não assumam valores numéricos negativos

EXERCÍCIOS

1) Calcule

a) √4x⁶ =
b) √x²y⁴ =
c) √36c⁴ =
d) √81m² =
e) √25x¹² =
f) √49m¹⁰ =
g) √9xb² =
h) √9x²y² =
i) √16x⁸ =

2) Calcule:

a) √x²/49 =
b) √x²/25 =
c) √4/9x⁸ =
d) √49/64x¹⁰ =
e) √25/81yx⁶ =
f) √121/100 x²m⁸ =



Agora tente fazer esses exercícios:

1) (Fuvest) Qual é o valor da expressão a²- 3a²x²y², para a=10, x=3 e y=1.

2)O valor da expressão x2 – 4xy + 4y2 quando x= 7 e y = 3 é?

3) Classifique-as seguintes afirmativas como verdadeiras ( V ) ou falsas ( F ).
a) ( ) O coeficiente numérico do monômio - ab2  é - .
                                                                       3            3
b) ( ) Os monômios 4xy2 e 4xy3 são semelhantes.
c) ( ) Se x = - 2 e y = - 4, então x – y = 2 .
d) ( ) Se a = -1 e b = 5, então - a - b = -6

4)Numa cidade, uma corrida de táxi tem um custo fixo de R$2,60 e outro variável de R$0,40 por quilômetro rodado. Onde P representa o preço a ser pago e x representa a quantidade de quilômetros rodados.
a) Escreva a expressão para calcular o preço P a ser pago numa corrida de táxi nessa cidade
b) Numa corrida de táxi nessa cidade, um passageiro rodou 18 km. Quanto ele vai pagar?

Nenhum comentário:

Postar um comentário

RACIOCÍNIO LÓGICO

  RACIOCÍNIO LÓGICO Lógica matemática Questão 1 Um pedreiro diz: "Se eu tivesse dois tijolos a mais, o dobro deste número seria 100...