26/03/2017

Exercícios resolvidos Potenciação

Exercícios resolvidos Potenciação



Resultado de imagem para potenciação


Consideremos uma multiplicação em que todos os fatores são iguais.


Exemplo:


5 x 5 x 5, indicada por 53
ou seja; 53 = 5 x 5 x 5 = 125




No exemplo acima temos:

· 5 é chamado de base (fator que se repete)

· 3 é chamado de expoente (indica o número de vezes que repetimos a base)

· 125 é a potência (resultado da operação)

Outros exemplos:

· a) 23 = 2 x 2 x 2 = 8

· b) 34 = 3 x 3 x 3 x 3 = 81

· c) 52 = 5 x 5 = 25

LEITURA:

· O expoente 2 é chamado de quadrado.

· O expoente 3 é chamado de cubo.

· O expoente 4 é chamado de quarta potência.
· O expoente 5 é chamado de quinta potência.

Assim:
· 72 lê-se: sete ao quadrado
· 63 lê-se: seis ao cubo
· 24 lê-se: dois elevado à quarta potência
· 35 lê-se: três elevado à quinta potência
Observação:
·  Todo número elevado ao expoente 1 é igual à própria base.
· Todo número elevado ao expoente 0 (zero) é igual a 1 (um).
EXERCÍCIOS

1 )Sendo 43 = 64, responda:
 a) Quem é a base?
 b) Quem é o expoente?
 c) Quem é a potência?

(R: a) 4   b) 3    c)  64)
2) Escreva na forma de potência:
 a) 5 x 5
 b) 3 x 3 x 3
 c) 7 x 7 x 7
 d) 2 x 2 x 2 
 e) a x a x a 

(R: a) 5²   b) 3³   c) 7³   d) 2³     e) a³)

3) Calcule as potências:
 a) 23
 b) 42
 c) 54
 d) 05
 e) 16
 f) 30
 g) 40
 h) 62
 i) 241
 j) 670

(R: a) 8  b) 16  c) 625  d) 0   e) 1   f)1   g)1   h)36   i) 24    j) 1)


4) Sendo x = 2, y = 3 e z = 4, calcule:
 a) x2
 b) y3
 c) z5
 d) xy
 e) yx
 f) xz
 g) 3x
 h) 4z
 i) 5y

(R: a) 4  b)8  c)1024  d)8  e)9  f)16  g)9  h)256  i)125)
5 )Calcule:
 a) O quadrado de 11
 b) O cubo de 7
 c) O quadrado de 8
 d) A quinta potência de 2

(R: a) 121  b)343  c) 64  d) 32)

6)Quem é maior?
 a) 23 ou 32
 b) 1120 ou 1201
 c) 560 ou 056

(R: a) 3²= 9   b)120¹=120  c)56 elevado a zero= 1)


7 )Calcule:
 a) 3.102
 b) 5.34
 c) 7.43

(R: a)300   b)405  c)448)

8) Transforme os produtos indicados, em potência:

      
a)5.5.5 =
b)7.7 =
c)8.8.8 =
d)1.1.=
e)6.6.6 =
f)2.2.2.=
g)45.45=
h)68.68.68=
i)89.89.89 =

   (R:a)5³  b)7²  c)8³  d)1²  e)6³  f)2³  g)45²  h)68³  i)89³)


9) Transforme em produto, as potências:

a) 4² =
b) 5³ =

(R:a) 4.4     b) 5.5.5)


10)Escreva como se lê:

a) 4² =
b) 5³ =


(    (R: a)quatro elevado ao quadrado   b) cinco elevado ao cubo)



11)Resolva e dê a nomenclatura:

 4² =

Base =
Expoente =
Potência =


(R: 16  base=4, expoente=2 e potência= 16)

12) Na potenciação sempre que a base for 1 a potência será igual a:


(R: 1)
13) Todo número natural não-nulo elevado à zero é igual à:

(R: 1)
14) Qual o resultado de 43 ?

(R: 64)

15) Todo número natural elevado a 1 é igual a _______________

(R: a própria base)

16) Escreva as potências com os números naturais e depois resolva-as:

a) Dezesseis elevado ao quadrado
b) Cinquenta e quatro elevado à primeira potência
c)Zero elevado à décima primeira potência
d) Um elevado à vigésima potência
e) Quatorze elevado ao cubo
f) Dois elevado à nona potência
g) Três elevado à quarta potência
h) Dez elevado à sexta potência
i) Oitenta e cindo elevado a zero
j) Dois mil e quarenta e seis elevado à primeira potência


(R: a)16²= 256  b)54¹=54  c)0  d)1  e)14³=2744  f)512  g)81  h) 1 000 000  i)1  j)2046


17) Simplifique as expressões numéricas :

a) 5 + 3²2=




b) 7² - 42 + 3 =




c) 10² - 3² + 5=



(R:a)23  b)44 c)96)

POTENCIAÇÃO E RADICIAÇÃO 6º ano

POTENCIAÇÃO E RADICIAÇÃO 6º ano


POTENCIAÇÃO

Consideremos uma multiplicação em que todos os fatores são iguais

Exemplo
5x5x5, indicada por 5³

ou seja , 5³= 5x5x5=125

onde :

5 é a base (fator que se repete)

3 é o expoente ( o número de vezes que repetimos a base)

125 é a potência ( resultado da operação)

Outros exemplos :
a) 7²= 7x7=49
b) 4³= 4x4x4=64
c) 5= 5x5x5x5=625
d) 2= 2x2x2x2x2=32

O expoente 2 é chamado de quadrado
O expoente 3 é chamado de cubo
O expoente 4 é chamado de quarta potência.
O expoente 5 é chamado de quinta potência.

Assim:

a) 7² Lê-se: sete elevado ao quadrado
b) 4³ Lê-se: quatro elevado ao cubo
c) 5Lê-se: cinco elevado a quarta potência
d) 2⁵ Lê-se: dois elevado a quinta potência



Por convenção temos que:

1) todo o número elevado ao expoente 1 é igual à própria base,

exemplo

a) 8¹ = 8
b) 5¹ = 5
c) 15¹ = 15

2) todo o número elevado ao expoente zero é igual a 1

exemplo

a) 8º=1
b) 4º=1
c) 12º=1


EXERCÍCIOS

1) Em 7² = 49, responda:

a) Qual é a base?
b) Qual é o expoente?
c) Qual é a potência?

2) Escreva na forma de potência:

a) 4x4x4= (R: 4³)  
b) 5x5 = (R: 5²)  
c) 9x9x9x9x9= (R: 9⁵)   
d) 7x7x7x7 = (R:  7⁴)  
e) 2x2x2x2x2x2x2= (R: 2 )
f) cxcxcxcxc= (R: c⁵ ) 

3) Calcule a potência:

a) 3² = (R: 9)
b) 8² = (R: 64)
c) 2³= (R: 8)d) 3³ = (R: 27)e) 6³ = (R: 216)
f) 2 = (R: 16)
g) 3 = (R: 81)
h) 3 = (R: 243)i) 1 = (R: 1)j) 0 = (R: 0)l) 1⁵ (R: 1)
m) 10² = (R100)
n) 10³ = (R: 1000)
o) 15² = (R: 225)
p) 17² = (R: 289)
q) 30² = (R: 900) 

4) Calcule as potências:

a)40² = (R: 1600)
b)32² = (R: 1024) 
c)15³ = (R: 3375)
d) 30³= (R: 27000)
e) 11 = (R: 14641) 
f) 300² = (R: 90000) 
g) 100³ = (R: 1000000)
h) 101² = (R: 10201)

5) Calcule as Potências:

a) 11² = (R: 121)b) 20² = (R: 400)
c) 17² = (R: 289)
d) 0² = (R: 0)e) 0¹ = ( R: 0) 
f) 1⁶ = (R: 1)
g) 10³ = (R: 1.000)
h) 470¹ = (R: 470)i) 11³ = (R: 1331)
j) 67⁰ = (R: 1)k) 1³⁰ = (R: 1)l) 10⁵ = (R: 100000)m) 1⁵ = (R: 1)n) 15³ = (R: 3375)
o) 1² = (R: 1)
p) 1001⁰= (R: 1)



RADICIAÇÃO
Qual o número que elevado ao quadrado é igual a 9?

Solução

Sendo 3² = 9, podemos escrever que √9 = 3

Essa operação chama-se radiciação, que é a operação inversa da potenciação

Exemplos

Potenciação------------------------radiciação
a) 7² = 49 ---------------------------- √49= 7
b) 2³= 8 ------------------------------ ∛8 = 2
c) 3⁴= 81 ---------------------------- ∜81 = 3

O sinal √ chamamos de radical
O índice 2 significa : raiz quadrada
O índice 3 significa: raiz cúbica
O índice 4 significa: raiz quarta

assim:

√49= 7 lê-se: raiz quadrada de 49

∛8 = 2 lê-se : raiz cúbica de 8

∜81 = 3 lê-se: raiz quarta de 81

Nota:

Não é necessário o índice 2 no radical para a raiz quadrada


EXERCÍCIOS

1)Descubra o número que :

a) elevado ao quadrado dá 9 ( R: 3)
b) elevado ao quadrado dá 25 (R: 5)

c) elevado ao quadrado dá 49 (R: 7)

d) elevado ao cubo dá 8 (R:2)

2) Quanto vale x ?

a) x²= 9 (R:3)
b) x²= 25 (R:5)
c) x²= 49 (R:7)
d) x²= 81 (R:9)

3) Determine a Raiz quadrada:

a) √9 = (R: 3)
b) √16 = (R: 4)
c) √25 = (R: 5)
d) √81 = (R9)
e) √0 = (R: 0)
f) √1 = (R: 1)
g) √64 = (R: 8)
h) √100 = (R: 10)

4) Resolva as expressões abaixo:

a) √16 + √36 = 4 + 6 = (R: 10)
b) √25 + √9 = 5 + 3 = (R: 8)
c) √49 - √4 = 7 - 2 = (R: 5)
d) √36- √1 = 6 - 1 = (R: 5)
e) √9 + √100 = 3 + 10 = (R: 13)
f) √4 x √9 = 2 x 3 = (R: 6)



PROPRIEDADES DA POTENCIAÇÃO

Primeira propriedade

Multiplicação de potências de mesma base

Ao multiplicar potências de mesma base, repetimos a base e somamos os expoentes.
exemplos
3² x 3⁵ = 3²⁺⁵ = 3⁷

conclusão:
conservamos a base e somamos os expoentes.


EXERCÍCIOS

1) Reduza a uma só potência

a) 4³ x 4 ²= (R: 4⁵)
b) 7⁴ x 7⁵ = (R: 7⁹)
c) 2⁶ x 2²= (R: 2⁸)
d) 6³ x 6 = (R: 6⁴)
e) 3⁷ x 3² = (R: 3⁹)
f) 9³ x 9 = (R: 9⁴)
g) 5 x 5² = (R: 5³)
h) 7 x 7⁴ = (R: 7⁵)
i) 6 x 6 = (R: 6²)
j) 3 x 3 = (R: 3²)
l) 9² x 9⁴x 9 = (R: 9⁷)
m) 4 x 4² x 4 = (R: 4⁴)
n) 4 x 4 x 4= (R: 4³)
0) m⁰ x m x m³ = (R: m⁴)
p) 15 x 15³ x 15⁴x 15 = (R: 15⁹)


2) Reduza a uma só potência:

a) 7² x 7⁶ = (R: 7⁸)
b) 2² x 2⁴= (R: 2⁶)
c) 5 x 5³ = (R: 5⁴)
d) 8² x 8 = (R: 8³)
e) 3⁰ x 3⁰ = (R: 3⁰)
f) 4³ x 4 x 4² = (R: 4⁶)
g) a² x a² x a² = (R: a⁶)
h) m x m x m² = (Rm⁴)
i) x⁸ . x . x = (R: x¹⁰)
j) m . m . m = (R: m³)

Segunda Propriedade

Divisão de Potência de mesma base

Ao dividir potências de mesma base, repetimos a base e subtraímos os expoentes.

Exemplo

a) 8⁹: 8² = 8⁹⁻² = 8⁷

b) 5⁴ : 5 = 5⁴⁻¹ = 5³

conclusão : conservamos a base e subtraimos os expoentes

EXERCÍCIOS

1) Reduza a uma só potência


a) 5⁴ : 5² = (R: 5²)
b) 8⁷ : 8³ = (R:  8⁴)
c) 9⁵ : 9² = (R: 9³)
d) 4³ : 4² = (R: 4¹)e) 9⁶ : 9³ = (R: 9³)
f) 9⁵ : 9 = (R9⁴)
g) 5⁴ : 5³ = (R: 5¹)
h) 6⁶ : 6 = (R: 6⁷)
i) a⁵ : a³ = (R: a²)
j) m² : m = (R: m¹)
k) x⁸ : x = (R: x⁷)
l) a⁷ : a⁶ = (R: a¹)


2) Reduza a uma só potência:

a) 2⁵ : 2³ =
b) 7⁸ : 7³=
c) 9⁴ : 9 =
d) 5⁹ : 5³ =
e) 8⁴ : 8⁰ =
f) 7⁰ : 7⁰ =

Teceira Propriedade

Potência de Potência

Ao elevar uma potência a um outro expoente, repetimos a base e multiplicamos os expoentes.

(7²)³ = 7²΄³ = 7⁶

conclusão: conservamos a base e multiplicamos os expoentes.


EXERCÍCIOS

1) Reduza a uma só potência:

a) (5⁴)²
b) (7²)⁴
c) (3²)⁵
d) (4³)²
e) (9⁴)⁴
f) (5²)⁷
g) (6³)⁵
h) (a²)³
i) (m³)⁴
j) (m³)⁴
k) (x⁵)²
l) (a³)⁰
m) (x⁵)⁰

2) Reduza a uma só potência:

a) (7²)³ =
b) (4⁴)⁵ =
c) (8³)⁵ =
d) (2⁷)³ =
e) (a²)³ =
f) (m³)⁴ =
g) (a⁴)⁴ =
h) (m²)⁷ =


EXPRESSÕES NUMÉRICAS COM POTENCIAÇÃO


Para resolver uma expressão numérica, efetuamos as operações obedecendo à seguinte ordem :

1°) Potenciação
2°) Multiplicações e divisões
3°) Adições e Subtrações

EXEMPLOS

1) exemplo

   5 + 3² x 2 =
= 5 + 9 x 2 =
= 5 + 18 =
= 23

2) exemplo

 7² - 4 x 2 + 3 =
= 49 – 8 + 3 =
= 41 + 3 =
= 44

Há expressões onde aparecem os sinais de associação e que devem ser eliminados nesta ordem:

1°) parênteses ( )
2°) colchetes [ ]
3°) chaves { }

exemplos

1°) exemplo

   40 – [5² + ( 2³ - 7 )] =
= 40 – [5² + ( 8 - 7 )]
= 40 – [25 + 1 ]=
= 40 – 26 =
= 14

2°) exemplo

   50 –{ 15 + [ 4² : ( 10 – 2 ) + 5 x 2 ] } =
= 50 –{ 15 + [ 16 : 8 + 10 ]}=
= 50 – { 15 + [ 2 + 10 ] } =
= 50 – { 15 +12 } =
= 50 – 27 =
= 23

Exercícios

1) Calcule o valor das expressões:

a) 7² - 4 = (R:45)
b) 2³ + 10 = (R:18)
c) 5² - 6 = (R:19)
d) 4² + 7⁰= (R:17)e) 5⁰+ 5³= (R: 126)
f) 2³+ 2⁴ = (R: 24)
g) 10³ - 10² = (R: 900) 
h) 80¹ + 1⁸⁰ = (R: 81)
i) 5² - 3² = (R: 16)
j) 1⁸⁰ + 0⁷⁰ = (R: 1)

2) Calcule

a) 3² + 5 = (R: 14)b) 3 + 5² = (R: 28)
c) 3² + 5² = (R: 34)
d) 5² - 3² = (R: 16)
e) 18 - 7⁰ = (R: 17)f) 5³ - 2² = (R: 121)
g) 10 + 10² = (R: 110)
h) 10³ - 10² = (R: 900)
i) 10³ - 1¹ = (R: 999)

3) Calcule o valor das expressões

a) 2³ x 5 + 3² = (R: 49)
b) 70⁰+ 0⁷⁰ - 1 = (R: 0 )
c) 3 x 7¹ - 4 x 5⁰ = (R: 17)
d) 3⁴- 2⁴: 8 – 3 x 4 = (R: 67)
e) 5² + 3 x 2 – 4 = (R: 27)
f) 5 x 2² + 3 – 8 = (R: 15)
g) 5² - 3 x 2² - 1 = (R: 12)
h) 16 : 2 – 1 + 7² = (R: 56)

4) calcule o valor das expressões:

a) 5² : ( 5 +1 -1)+ 4 x 2 = (R: 13)
b) (3 +1)² +2 x 5 - 10⁰ = (R: 25)
c) c) 3²: ( 4 – 1) + 3 x 2² = (R: 15)
d) 70 –[ 5 x (2² : 4) + 3²] = (R: 56)
e) ( 7 + 4) x ( 3² - 2³) = (R: 11)
f) 5² + 2³ - 2 x (3 + 9) = (R: 9)
g) 6² : 3² + 4 x 10 – 12 = (R: 32) 
h) (7² - 1 ) : 3 + 2 x 5 = (R: 26)

5) calcule o valor das expressões:

a) 5 + 4²- 1 = (R: 20)
b) 3⁴ - 6 + 2³ = (R: 83)
c) 2⁵ - 3² + 1⁹ = (R: 24)
d) 10²- 3² + 5 = (R: 96)e) 11² - 3² + 5 = (R: 117)
f) 5 x 3² x 4 = (R: 180)
g) 5 x 2³ + 4² = (R: 56)
h) 5³ x 2² - 12 = (R: 488)

6) Calcule o valor das expressões:

a) ( 4 + 3)² - 1 = (R: 48)
b) ( 5 + 1 )² + 10 = (R: 46)
c) ( 9 – 7 )³ x 8 = (R: 64)
d) ( 7² - 5²) + ( 5² - 3 ) = (R: 46)e) 6² : 2 - 1⁴ x 5 = (R: 13)
f) 3² x 2³ + 2² x 5² = (R: 172)

7) Calcule o valor das expressões:

a) 4²- 10 + (2³ - 5) = (R: 9)b) 30 – (2 + 1)²+ 2³ = (R: 29)
c) 30 + [6² : ( 5 – 3) + 1 ] = (R: 49)
d) 20 – [6 – 4 x( 10 - 3²) + 1] = (R: 17)
e) 50 + [ 3³ : ( 1 + 2) + 4 x 3] = (R: 71)f) 100 –[ 5² : (10 – 5 ) + 2⁴ x 1 ] = (R: 79)
g) [ 4² + ( 5 – 3)³] : ( 9 – 7)³ = (R: 3 )h) 7²+ 2 x[(3 + 1)² - 4 x 1³] = (R: 73)
i) 25 + { 3³ : 9 +[ 3² x 5 – 3 x (2³- 5¹)]} = (R: 64)

8) Calcule as expressões:

a) ( 8 : 2) . 4 + {[(3² - 2³) . 2⁴ - 5⁰] . 4¹}= (R:76)
b) ( 3² - 2³) . 3³ - 2³ + 2² . 4² = ( R:83)
c) ( 2⁵ - 3³) . (2² - 2 ) = (R: 10)
d) [2 . (10 - 4² : 2) + 6²] : ( 2³ - 2²) = ( R:10)
e) (18 – 4 . 2) . 3 + 2⁴ . 3 - 3² . ( 5 – 2) = (R: 51)
f) 4² . [2⁴ : ( 10 – 2 + 8 ) ] + 2⁰ = (R: 17)
g) [( 4² + 2 . 3²) + ( 16 : 8)² - 35]² + 1¹⁰ - 10⁰ = (R : 9)
h) 13 + ( 10 – 8 + (7 – 4)) = (R: 18)
i) (10 . 4 + 18 – ( 2 . 3 +6)) = (R:46)
j) 7 . ( 74 – ( 4 + 7 . 10)) = (R: 0)
k) ( 19 : ( 5 + 3 . 8 – 10)) = (R : 1)
l) (( 2³ + 2⁴) . 3 -4) + 3² = (R: 77)
m) 3 + 2 . ((3²- 2⁰) + ( 5¹ - 2²)) + 1 = (R: 22)

Potências e Raízes

POTENCIAÇÃO

A potenciação é uma multiplicação de fatores iguais

Exemplos 2³ = 2 .2 .2 = 8

Você sabe também que:

2 é a base
3 é o expoente
8 é a potência ou resultado

1) O expoente é par

a) (+7)² = (+7) . (+7) = +49
b) (-7)² = (-7) . (-7) = +49
c) (+2)⁴ = (+2) . (+2) . (+2) . (+2) = + 16
d) (-2)⁴ = (-2) . (-2) . (-2) . (-2) = + 16

Conclusão : Quando o expoente for par, a potencia é um número positivo

2) Quando o expoente for impar

a) (+4)³ = (+4) . (+4) . (+4) = + 64
b) (-4)³ = (-4) . (-4) . (-4) = - 64
c) (+2)⁵ = (+2) . (+2) . (+2) . (+2) . (+2) = +32
d) (-2)⁵ = (-2) . (-2) . (-2) . (-2) . (-2) = -32

Conclusão : Quando o expoente é impar, a potência tem o mesmo sinal da base.


EXERCÍCIOS

1) Calcule as potências ;

a) (+7)²= (R: +49)
b) (+4)² = (R: +16)
c) (+3)² = (R: +9)
d) (+5)³ = (R: +125)
e) (+2)³ = (R: +8)
f) (+3)³ = (R: +27)
g) (+2)⁴ = (R: +16)
h) (+2)⁵ = (R: +32)
i) (-5)² = (R: +25)
j) (-3)² = (R: +9)
k) (-2)³ = (R: -8)
l) (-5)³ = (R: -125)
m) (-1)³ = (R: -1)
n) (-2)⁴ = (R: +16)
o) (-3)³ = (R: -27)
p) (-3)⁴ = (R: +81)


2) Calcule as potencias:

a) (-6)² = (R: +36)
b) (+3)⁴ =  (R: +81) 
c) (-6)³ = (R: -216)
d) (-10)² = (R: +100)
e) (+10)² = (R: +100)
f) (-3)⁵ = (R: -243)
g) (-1)⁶ = (R: +1)h) (-1)³ = (R: -1)
i) (+2)⁶ = (R: +64)
j) (-4)² = (R: +16)
k) (-9)² = (R: +81)
l) (-1)⁵⁴ = (R: +1)
m) (-1)¹³ = (R: -1)
n) (-4)³ = (R: -64)
o) (-8)² = (R: +64) 
p) (-7)² = (R: +49)

3) Calcule as potencias

a) 0⁷ = (R: 0)
b) (-2)⁸ = (R: 256)
c) (-3)⁵ = (R: -243)
d) (-11)³ = (R: -1331)
e) (-21)² = (R: 441)
f) (+11)³ = (R: +1331)
g) (-20)³ = (R: -8000)
h) (+50)² = (R: 2500)

4) Calcule o valor das expressões (primeiro as potências)

a) 15 + (+5)² = (R: 40)
b) 32 – (+7)² = (R: -17)
c) 18 + (-5)² = (R: 43)
d) (-8)² + 14 = (R: 78)
e) (-7)² - 60 = (R: -11)f) 40 – (-2)³ = (R: 48)
g) (-2)⁵ + 21 = (R: -11)
h) (-3)³ - 13 = (R: -40)
i) (-4)² + (-2)⁴ = (R: 32)
j) (-3)² + (-2)³ = (R: 1)
k) (-1)⁶ + (-3)³ = (R: -26)
l) (-2)³ + (-1)⁵ = (R: -9)


CONVEÇÕES:

Todo o número inteiro elevado a 1 é igual a ele mesmo.

Exemplos:

a) (+7)¹ = +7
b) (-3)¹ = -3

Todo o número inteiro elevado a zero é igual a 1.

Exemplos:
a) (+5)⁰ = 1
b) (-8)⁰= 1

IMPORTANTE!

Observe como a colocação dos parênteses é importante:

a) (-3)² = (-3) . (-3) = +9
b) -3² = -(3 . 3) = -9

Para que a base seja negativa, ela deve estar entre parênteses.



EXERCÍCIOS


1) Calcule as potências:

a) (+6)¹ = (R: +6)
b) (-2)¹ = (R: -2)c) (+10)¹ = (R: +10)
d) (-4)⁰ = (R: +1)e) (+7)⁰ = (R: +1)
f) (-10)⁰ = (R: +1)
g) (-1)⁰ = (R: +1)
h) (+1)⁰ = (R: +1)
i) (-1)⁴²³ = (R: -1)j) (-50)¹ = (R: -50)
k) (-100)⁰ = (R+1)
l) 20000⁰ = (R: +1)
2) Calcule:

a) (-2)⁶ = (R: 64
b) -2⁶ = (R: -64)

Os resultados são iguais ou diferentes?
R: Deferentes

3) Calcule as potências:

a) (-5)² = (R: 25)
b) -5² = (R: -25)
c) (-7)² = (R: +49)
d) -7² = (R: -49)
e) (-1)⁴ = (R: +1)
f) -1⁴ = (R: -1)
4) Calcule o valor das expressões (primeiro as potências):

a) 35 + 5²= (R: 60)b) 50 - 4² = (R: -14) 
c) -18 + 10² = (R: 82) 
d) -6² + 20 = (R: -16)
e) -12-1⁷ = (R: -13)
f) -2⁵ - 40 = (R: -72)
g) 2⁵ + 0 - 2⁴ = (R: 16) 
h) 2⁴ - 2² - 2⁰ = (R: 11)
i) -3² + 1 - .65⁰ = (R: -9)
j) 4² - 5 + 0 + 7² = (R: 60)
k) 10 - 7² - 1 + 2³ = (R: -32)
l) 3⁴ - 3³ + 3² - 3¹ + 3⁰ = (R: 61)


PROPRIEDADES 

1) Produto de potência de mesma base: conserva-se a base e somam-se os expoentes.

Observe: a³ . a² = ( a .a .a ) . ( a .a ) = a⁵

Note que: a³ . a² = a³ ⁺ ² = a⁵

Exemplos

a) (-5)⁷ . (-5)² = (-5) ⁷ ⁺ ² = (-5)⁹
b) (+2)³ . (+2)⁴ = (+2)³ ⁺ ⁴ = (+2)⁷

EXERCÍCIOS

1) Reduza a uma só potência:

a) 5⁶ . 5² = 5⁹
b) x⁷. x⁸= x¹⁵a) 2⁴ . 2 . 2⁹ = 2¹⁴
b) x⁵ .x³ . x = x⁹
c) m⁷ . m⁰ . m⁵ = m¹²
d) a . a² . a = a⁴


1) Reduza a uma só potencia:

a) (+5)⁷ . (+5)² = [R: (+5)⁹]
b) (+6)² . (+6)³ = [R: (+6)⁵]
c) (-3)⁵ . (-3)² = [R: (-3)⁷]
d) (-4)² . (-4) = [R: (-4)³]
e) (+7) . (+7)⁴ = [R: (+7)⁵]
f) (-8) . (-8) . (-8) = [R: (-8)³]
g) (-5)³ . (-5) . (-5)² = [R: (-5)⁶]
h) (+3) . (+3) . (+3)⁷ = [R: (+3)⁹]
i) (-6)² . (-6) . (-6)² = [R: (-6)⁵]
j) (+9)³ . (+9) . (+9)⁴ = [R: (+9)⁸] 


2) Divisão de potências de mesma base:

Observe: a⁵ : a² = (a . a . a . a .a ) : (a .a ) = a³

Note que: a⁵ : a² = a⁵⁻² = a³

Exemplos:

a) (-5)⁸ : (-5)⁶ = (-5)⁸⁻⁶ = (-5)²
b) (+7)⁹ : (+7)⁶ = (+7)⁹⁻⁶ = (+7)³


EXERCÍCIOS

1) Reduza a um asó potência:
a) a⁷ : a³ = (R: a⁴)
b) c⁸ : c² = (R: c⁶)
c) m³ : m = (R: m² )
d) x⁵ : x⁰ = (R: x⁵) 
e) y²⁵ : y²⁵ = (R: y⁰= 1) 
f) a¹⁰² : a = (R: a¹⁰¹)

2) Reduza a uma só potência:

a) (-3)⁷ : (-3)² = [ R: (-3)⁵]
b) (+4)¹⁰ : (+4)³ = [R: ( +4)⁷]
c) (-5)⁶ : (-5)² = [R: (-5)⁴]
d) (+3)⁹ : (+3) = [R: (+3)⁸]
e) (-2)⁸ : (-2)⁵ = [R: (-2)³]
f) (-3)⁷ : (-3) = [R: (-3)⁶]
g) (-9)⁴ : (-9) = [R: (-9)³]
h) (-4)² : (-4)² = [R: (-4)⁰ = 1]

3) Calcule os quocientes:

a) (-5)⁶ : (-5)⁴ = (R: 25)
b) (-3)⁵ : (-3)² = (R: -27 )
c) (-4)⁸ : (-4)⁵= (R: -64)
d) (-1)⁹ : (-1)² = (R: -1)
e) (-7)⁸ : (-7)⁶= (R: 49)
f) (+10)⁶ : (+10)³ = (R: 1000)

3) Potência de Potência:

Obeserve: (a²)³ = a²˙³ = a⁶
Exemplo: [(-2)³]⁴ = (-2)³˙⁴ = (-2)¹²

EXERCÍCIOS

1) Aplique a propriedade de potência de potência.

a) [(-4)² ]³ = (-4)⁶
b) [(+5)³ ]⁴ = (+5)¹²
c) [(-3)³ ]² = (-3)⁶
d) [(-7)³ ]³ = (-7)⁹e) [(+2)⁴ ]⁵ = (+2)²⁰ 
f) [(-7)⁵ ]³ = (-7)¹⁵
g) [(-1)² ]² = (-1)⁴
h) [(+2)³ ]³ = (+2)⁹
i) [(-5)⁰ ]³ = (-5)⁰ = 1

2) Calcule o valor de:

a) [(+3)³]² = 729
b) [(+5)¹]⁵ = -243
c) [(-1)⁶]² = 
d) [(-1)³]⁷ = -1e) [(-2)²]³ = 64
f) [(+10)²]² = 10000

4) Potência de um produto. 

Obeserve: ( a . b )³ = ( a . b ) . (a . b ) . ( a . b ) = ( a . a . a ) . ( b . b . b ) = a³ . b³

Exemplos: [(-2) . (+5) ] = (-2)³ . (+5)³

EXERCÍCIOS

1) Aplique a propriedade de potência de um produto:

a) [(-2) . (+3)]⁵ = (-2)⁵ . (+3)⁵b) [(+5) . (-7)]³ = (+5)³. (-7)³ 
c) [(-7) . (+4)]² = (-7)² . (+4)²
d) [(+3) . (+5)]² = (+3)² . (+5)²
e) [(-4)² . (+6)]³ = (-4)⁶ . (+6)³
f) [(+5)⁴ . (-2)³]² = (-4)⁸ . (+6)⁶


RAIZ QUADRADA EXATA DE NÚMEROS INTEIROS


Vamos recordar:

√49 = 7, porque 7² = 49

No conjunto dos números inteiros, a raiz quadrada de 49 pode ser:

+7, poque (+7)² = 49.

-7, porque (-7)² = 49.

Como o resultado de uma operação, deve ser único, vamos adotar o seguinte critério:

Exemplos:

a) +√16 = +4
b) - √16 = -4
c) √9 = 3
d) -√9 = -3

Os números negativos não têm raiz quadrada no conjunto Z

Veja:

a) √-9 = nenhum inteiro, pois (nenhum inteiro)² = -9
b) √-16 = nenhum inteiro, pois (nenhum inteiro)² = -16

EXERCÍCIOS

1) Determine as raízes:

a) √4 = (R: 2)
b) √25 = (R: 5)
c) √0 = (R: 0)
d) -√25 = (R: -5)
e) √81 = (R: 9)
f) -√81 = (R: -9)
g) √36 = (R: 6)
h) -√1 = (R: -1)
i) √400 = (R: 20)
j) -√121 = (R: -11)
k) √169 = (R: 13)
l) -√900 = (R: -30)

2) Calcule caso exista em Z:

a) √4 = (R: 2)
b) √-4 = (R: não existe)
c) -√4 = (R: -2)d) √64 = (R: 8)e) √-64 = (R: não existe)
f) -√64 = (R: - 8)
g) -√100 = (R:-10)
h) √-100 = (R: não existe)

3) Calcule:

a) √25 + √16 = 9
b) √9 - √49 = -4
c) √1 + √0 = 1
d) √100 - √81 + √4 = 
e) -√36 + √121 + √9 = 8
f) √144 + √169 -√81 = 16





EXEPRESSÕES NÚMERICAS



As expressões devem ser resolvidas obedecendo à seguinte ordem de operações:

1) Potenciação e radiciação;
2) Multiplicação e divisão
3) Adição e subtração

Nessas operações são realizados :

1) parênteses ( )
2) colchetes [ ]
3) chaves { }

exemplos:

calcular o valor das expressões :

1°) exemplo
(-3)² - 4 - (-1) + 5²
9 – 4 + 1 + 25
5 + 1 + 25
6 + 25
31


2°) exemplo

15 + (-4) . (+3) -10
15 – 12 – 10
3 – 10
-7

3°) exemplo

5² + √9 – [(+20) : (-4) + 3]
25 + 3 – [ (-5) +3 ]
25 + 3 - [ -2]
25 +3 +2
28 + 2
30

EXERCÍCIOS

1) Calcule o valor das expressões:

a) 5 + ( -3)² + 1 = 15 
b) 10 + (-2)³ -4 = -2
c) 12 – 1 + (-4)² = 27
d) (-1)⁵ + 3 – 9 = -7
e) 18 – (+7) + 3² = 20
f) 6 + (-1)⁵ - 2 = 3
g) (-2)³ - 7 – (-1) = -14
h) (-5)³ - 1 + (-1)⁹ = -127
i) 5⁰ - ( -10) + 2³ = 19
j) (-2)³ + (-3)² - 25 = -24

2) Calcule o valor das expressões:

a) 3 - 4² + 1 = -12
b) 2³ - 2² - 2 = 2
c) (-1)⁴ + 5 - 3² = -3
d) 5⁰ - 5¹ - 5⁰ = -5
e) (-3)². (+5) + 2 = 47
f) (-1)⁷ - (-1)⁸ = -2
g) 5 + (-3)² + 7⁰ = 15
h) √49 + 2³ - 1 = 14 

3) Calcule o valor das expressões:

a) (-3)² + 5 = 14
b) (-8)² - (-9)² = -17
c) -72⁰ + (-1)⁸ = 0d) (-12)⁰ + (+12)⁰ = 2
e) 10³ - (-10)² - 10⁰ = 899
f) (-7)² + (-6)² - (-1)² = 84
g) (-1)⁶ + (+1)⁵ + (-1)⁴ + (+1)³ = 
h) 2⁶ - 2⁵ - 2⁴ - 2³ - 2² - 2 = 2

4) Calcule o valor das expressões:

a) (-3) . (+7) + (-8) . (-3) = 3
b) (-3)³ + (+2)² - 7 = -30
c) 8 + (-3 -1)² = 24
d) (-2 + 6)³ : (+3 – 5)² = 16
e) –(-5)² + (-7 + 4) = -28
f) (-2)⁶ + (+5) . (-2) = 54

5) Calcule o valor das expressões:

a) (-3)³ . (-2)² + (3) + 5⁰ = -110
b) (-1)³ + 3 + (+2) . (+5) = 12 
c) (-2) . (-7) + (-3)² = 23
d) 2 . (-5)² - 3 . (-1)³ + 4 = 57
e) –[ -1 + (-3) . (-2)]²
f) –(5 – 7)³ - [ 5 - 2² - (4 – 6)] = 5
g) (-3 + 2 – 1)³ - ( -3 + 5 – 1)⁸ + 3 = -6
h) 8 – [ -7 + )-1) . (-6) + 4]²
i) 14 – [(-1)³ . (-2)² + (-35) : (+5)] = 25
j) 5³ - [ 10 + (7 -8)² ]² - 4 + 2³ = 8
k) (-1)⁸ + 6⁰ - [15 + (-40) : (-2)³ ] = -18
l) -3 –{ -2 – [(-35) : (+5) + 2² ]} = -4

6) Calcule o valor das expressões:

a) (- 3 + 5 + 2) : (-2) = -2
b) (+3 – 1)² - 15 = -11
c) (-2)³ - (-1 + 2)⁵ = -9
d) 40 : (-1)⁹ + (-2)³ - 12 = -60
e) 10 – [5 – (-2) + (-1)] = 4
f) 2 – { 3 + [ 4 – (1 – 2) + 3 ] – 4} = -5
g) 15 – [ (-5)² - (10 - 2³ ) ] = -8
h) 13 – [(-2) – (-7) + (+3)² ] = -1
i) 7² - [ 6 – (-1)⁵ - 2²] = 46
j) 2³ - [(-16) : (+2) – (-1)⁵] = 15
k) 50 : { -5 + [ -1 –(-2)⁵ : (-2)³ ]} = -5

7) Calcule o valor das expressões:

a) 10 + (-3)² = 19
b) (-4)² - 3 = 13 
c) 1 + (-2)³ = -7
d) -2 + (-5)² = 23
e) (-2)² + (-3)³ = -23
f) 15 + (-1)⁵ - 2 = 12g) (-9)² -2 – (-3) = 82
h) 5 + (-2)³ + 6 = 3

8) Calcule o valor das expressões:

a) 5 – { +3 – [(+2)² -(-5)² + 6 – 4 ]} = -17
b) 15 – { -3 + [(5 – 6)² . (9 -8 ) ² + 1]} = 16
c) 18 – { 6 – [ -3 – (5 – 4) – (7- 9)³ ] – 1 } = 17
d) -2 + { -5 –[ -2 – (-2)³ - 3- (3 -2 )⁹ ] + 5 } = -4
e) 4 – {(-2)² . (-3) – [ -11 + (-3) . (-4)] – (-1)} = 16

Exercícios em forma de teste:

1) O resultado de (-1001)² é:
a) 11 011
b) -11 011
c) 1 002 001 X
d) -1 002 001

2) O valor da expressão 2⁰ - 2¹ - 2² é:

a) -4
b) -5 
c) 8
d) 0

3) O valor da expressão (-10)² - 10² é:

a) 0 x
b) 40
c) -20
d) -40

4) O valor da expressão √16 - √4 é

a) 2 
b) 4
c) 6
d) 12

5) O valor da expressão 10 + √9 – 1 é:

a) 14
b) 18
c) 12 x
d) 20

6) O valor da expressão (-4)⁴ - (-4) é :

a) 20
b) -20
c) 252
d) 260 x
7) O valor da expressão (-2)⁴ + (-9)⁰ - (-3)² é :

a) 8 x
b) 12
c) 16
d) -26

8) O valor da expressão (-7)² + (+3) . (-4) – (-5) é :

a) 7
b) 37
c) 42 x
d) 47

9) A expressão (-7)¹⁰ : (-7)⁵ é igual a:

a) (-7)⁵ x
b) (-7)²
c) (-7)¹⁵
d) (-1)²

10) O valor da expressão –[-2 + (-1) . (-3)]² é :

a) -1 x
b) -4
c) 1
d) 4

11) O valor da expressão numérica -4² + (3 -5) . (-2)³ + 3² - (-2)⁴ é

a) 7
b) 8
c) 15
d) -7 x

RACIOCÍNIO LÓGICO

  RACIOCÍNIO LÓGICO Lógica matemática Questão 1 Um pedreiro diz: "Se eu tivesse dois tijolos a mais, o dobro deste número seria 100...